MONITORING REPORT 2022 (Year 4)

MAJOR HILL STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina

DMS Project ID No. 100015 Full Delivery Contract No. 7193 USACE Action ID No. SAW-2017-01472 DWR No. 17-0921 RFP No. 16-006990

> Cape Fear River Basin Cataloging Unit 03030002

Data Collection: January 2022 – October 2022 Submission: February 2023

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

Response to Monitoring Year 4 (2022) DMS Comments

Major Hill Mitigation Site (DMS #100015) Cape Fear River Basin 03030002, Alamance County Contract No. 100015

Comments Received (Black Text) & Responses (Blue Text)

General:

1. RS may elect to remove page 29-32 because this data was presented in last year's report. Fine to leave in if wanted.

Response: We acknowledge MY4 is an off year for stream monitoring and data represented in .pdf pages 29-32 (Tables 7A-7B. Baseline Stream Data Summary) was provided in the 2021 MY3 Report. For table number consistency between monitoring years, RS has elected to included keep all Appendix C, Stream Geomorphology Data, in the 2022 MY4 Report.

2. VP 1 and 4 are listed as not meeting success for MY4 in the stream portion of report CCPV. Please note that there are no MY4 success for the stream portion. It also appears that VP1 has 445 stems, which may meet IRT criteria for MY3 and MY5 depending on if the volunteers are in the planting list. RS may leave as-is, but please note comment for credit release purposes. Response: Noted, thank you.

Digital Comments:

1. The report indicates invasive species treatment in 2022 but no area of concern is noted on the CCPV or in the visual assessment table. Please verify the visual assessment was correct at the time of report submission.

Response: The visual assessment is correct. Footnote 4 of Table 6 (Vegetation Conditions Assessment states,

"The list of high concern species are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems.

The current level of invasive species on-site do no meet the criteria of "high concern" nor "low/moderate concern." Species treated are sporadic in nature, and do not pose a threat to young woody stems in the short-term nor suppressing the viability, density or growth of planted woody stems.

2. Water quality summary data is included in the report, but no data was submitted in year 4; if applicable please provide missing data.

Response: Water quality data is measured onsite, using digital meters, and readings are recorded by hand. Data is then entered directly into Table 9 of the document, and therefore, no raw data exists.

Major Hill Year 4, 2022 Monitoring Summary

General Notes

- No encroachment was identified in Year 4.
- No evidence of nuisance animal activity (i.e., beaver, heavy deer browsing, etc.) was observed.

Streams

- Stream measurements were not performed in year 4 (2022) in accordance with the monitoring schedule.
- Across the Site, all in-stream structures are intact and functioning as designed. The channel geometry compares favorably with the proposed conditions outlined in the Detailed Restoration Plan and as constructed. No stream areas of concern were identified during year 4 (2022) monitoring. Stream visual assessment results are documented in Tables 5A-5C (Appendix B). Tables for year 3 (2021) data and annual quantitative assessments are included in Appendix C.
- Two bankfull events were documented during year 4 (2022), monitoring for ten bankfull events to date during the monitoring period (Table 11, Appendix D).
- Channel formation was evident in UT 1 during year 4 (2022). The two streamflow gauges and trail cameras recorded 149 and 216 consecutive streamflow days (Tables 10A-B, Appendix D)

Wetlands

• All six groundwater gauges met success for the Year 4 (2022) monitoring period. Wetland hydrology data is in Appendix D.

C 2017	Success (Criteria Achieved/	Max Consecutive	Days During Gro	wing Seaso	n (Percenta	ge)
Gauge	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)	Year 6 (2024)	Year 7 (2025)
1	No/14 days* 6.0 percent	Yes/136 days 57.9 percent	Yes/74 days 31.4 percent	Yes/93 days 39.4 percent			
2	No/19 days* 8.1 percent	No/19 days 8.0 percent	No/21 days 8.9 percent	Yes/44 days 18.6 percent			
3	Yes/25 days 10.6 percent	Yes/235 days 100 percent	Yes/226 days 95.8 percent	Yes/204 days 86.4 percent			
4	Yes/34 days 14.5 percent	Yes/72 days 30.5 percent	Yes/60 days 25.4 percent	Yes/155 days 65.7 percent			
5	Yes/119 days 50.6 percent	Yes/135 days 57.4 percent	Yes/53 days 22.5 percent	Yes/77 days 32.6 percent			
6	Yes/77 days 32.8 percent	Yes/44 days 18.7 percent	Yes/80 days 33.9 percent	Yes/81 days 34.3 percent			

Vegetation

According to the mitigation monitoring plan, vegetation monitoring was not scheduled to take place during Year 4 (2022). However, vegetation measurements were cataloged for riparian buffer monitoring. These results are included in the Riparian Buffer Year 4 (2022) Monitoring Report (Appendix F) and indicate an average of 364 planted stems per acre (excluding live-stakes) for the eight permanent plots and 405 total stems per acre across the Site, including three temporary plots. No vegetation areas of concern were observed during year 4 (2022). Vegetation visual assessment results are documented in Table 6 (Appendix B).

MY 4 (2022) Monitoring Activity and Reporting History

Activity or Deliverable	Data Collection Complete	Completion or Delivery
MY 4 (2022) Vegetation Data Collection	NA	
MY 4 (2022) Stream Data Collection	NA	
MY 4 (2022) Monitoring Report	October 2022	February 2023

Site Maintenance Report (2022)

Invasive Species Work	Maintenance work
07/08/2022 Johnson Grass, Cattail, Tree-of-Heaven, Privet, Multiflora Rose	None

2023 Planned Vegetation Maintenance

Restoration Systems continues to monitor fescue throughout the Site. Based on permanent and random vegetation monitoring plots and visual observations, planted stems are establishing within areas where fescue was a concern. Currently, no additional planting or fescue specific herbicide treatments are proposed.

MONITORING REPORT 2022 (Year 4)

MAJOR HILL STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina

DMS Project ID No. 100015 Full Delivery Contract No. 7193 USACE Action ID No. SAW-2017-01472 DWR No. 17-0921 RFP No. 16-006990

> Cape Fear River Basin Cataloging Unit 03030002

Data Collection: January 2022 – October 2022 Submission: February 2023

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

Restoration Systems, LLC 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604 Contact: Worth Creech 919-755-9490 (phone) 919-755-9492 (fax) Prepared by:

And

Axiom Environmental, Inc.

Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603 Contact: Grant Lewis 919-215-1693 (phone)

TABLE OF CONTENTS

1
1
3
3
3
4
4
4
5
5
6
6
8
•••

APPENDICES

Appendix A. Background Tables

- Table 1. Project Components and Mitigation Units
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Attributes

Appendix B. Visual Assessment Data

- Figure 1. Project Location
- Figure 2. Current Conditions Plan View
- Tables 5A-5C. Visual Stream Morphology Stability Assessment
- Table 6. Vegetation Condition Assessment

Appendix C. Stream Geomorphology Data

Tables 7A-7B. Baseline Stream Data Summary Tables 8A-8D. Monitoring Data (Dimensional Morphology Summary & Stream Reach Data Summary) Table 9. Water Quality Data

Appendix D. Hydrology Data

Table 10A. UT1 Upstream Channel Evidence Table 10B. UT1 Downstream Channel Evidence Stream Gauge Graphs Table 11. Verification of Bankfull Events Table 12. Groundwater Hydrology Data Soil Temperature Graph Figure E1. 30-70 Percentile Graph for Rainfall Groundwater Gauge Graphs

Appendix E. Riparian Buffer MY4 (2022) Monitoring Report

1.0 PROJECT SUMMARY

Restoration Systems, LLC has established the North Carolina Division of Mitigation Services (NCDMS) Major Hill Stream and Wetland Restoration Site (Site).

1.1 Project Goals & Objectives

Project goals are based on the *Cape Fear River Basin Restoration Priorities* (RBRP) report (NCEEP 2009) and on-site data collection of channel morphology and function observed during field investigations. The Site is located within Targeted Local Watershed (TLW) 03030002050050. The RBRP report documents benthic ratings vary between "Fair" and "Good-Fair" possibly due to cattle, dairy, and poultry operations. The project is not located in a Regional or Local Watershed Planning Area; however, RBRP goals are addressed by project activities as follows with Site specific information following the RBRP goals in parenthesis.

- 1. Reduce and control sediment inputs (reduction of 10.0 tons/year after mitigation is complete);
- Reduce and manage nutrient inputs (livestock removal from streams, elimination of fertilizer application, and marsh treatment areas may result in a direct reduction of 852.4 pounds of nitrogen and 70.6 pounds of phosphorus per year);
- 3. Protect and augment designated natural heritage areas.

Site-specific mitigation goals and objectives were developed through the use of the North Carolina Stream Assessment Method (NC SAM) and North Carolina Wetland Assessment Method (NC WAM) analyses of existing and reference stream systems at the Site (NC SFAT 2015 and NC WFAT 2010) (see Table 1).

Targeted Functions	Goals	Objectives	Compatibility of Success Criteria
(1) HYDROLOGY			
 (2) Flood Flow (Floodplain Access) (3) Streamside Area Attenuation (4) Wooded Riparian Buffer (4) Microtopography 	 Attenuate flood flow across the Site. Minimize downstream flooding to the maximum extent possible. Connect streams to functioning wetland systems. 	 Construct new channel at historic floodplain elevation to restore overbank flows and restore jurisdictional wetlands Plant woody riparian buffer Remove livestock Deep rip floodplain soils to reduce compaction and increase soil surface roughness Protect riparian buffers with a perpetual conservation easement 	 BHR not to exceed 1.2 Document four overbank events in separate monitoring years Livestock excluded from the easement Attain Wetland Hydrology Success Criteria Attain Vegetation Success Criteria Conservation Easement recorded

Stream/Wetland Targeted Functions, Goals, and Objectives

Targeted Functions	Goals	Objectives	Compatibility of Success Criteria	
(1) HYDROLOGY (Continued)			
(3) Stream Stability (4) Channel Stability	_		• Cross-section measurements indicate a stable channel with	
(4) Sediment Transport	 Increase stream stability within the Site so that channels are neither aggrading nor degrading. 	 Construct channels with proper pattern, dimension, and longitudinal profile Remove livestock Construct stable channels with cobble/gravel substrate Plant woody riparian buffer 	 cobble/gravel substrate Visual documentation of stable channels and structures BHR not to exceed 1.2 ER of 1.4 or greater < 10% change in BHR and ER in any given year Livestock excluded from the easement Attain Vegetation Success Criteria 	
(1) WATER QUALITY		1	1	
(2) Streamside Area Vegetation	Remove direct nutrient and	 Remove livestock and reduce agricultural land/inputs Install marsh treatment areas Plant woody riparian buffer Restore/enhance jurisdictional wetlands adjacent to Site streams 	Livestock excluded from the	
(3) Upland Pollutant Filtration	pollutant inputs from the Site and		easementAttain Wetland Hydrology	
(3) Thermoregulation	reduce contributions		Success CriteriaAttain Vegetation Success	
(2) Indicators of Stressors	to downstream waters.		Criteria	
(1) HABITAT				
(2) In-stream Habitat				
(3) Substrate		 Construct stable channels with cobble/gravel substrate 	Cross-section measurement indicate a stable channel with	
(3) Stream Stability		 Plant woody riparian buffer to 	cobble/gravel substrate	
(3) In-Stream Habitat		provide organic matter and shade	• Visual documentation of stable	
(2) Streamside Habitat	Improve instream	• Construct new channel at historic floodplain elevation to restore	channels and in-stream structures.	
(3) Streamside Habitat	and streamside	overbank flows and plant woody	Attain Wetland Hydrology	
(3) Thermoregulation	habitat.	riparian buffer	Success Criteria	
Wetland Landscape Patch Structure		 Protect riparian buffers with a perpetual conservation easement Restore/enhance jurisdictional wetlands adjacent to Site streams 	Attain Vegetation Success Criteria	
Wetland Vegetation Composition			Conservation Easement recorded	

Stream/Wetland Targeted Functions, Goals, and Objectives (Continued)

1.2 Project Background

The Major Hill Stream and Wetland Mitigation Site (hereafter referred to as the "Site") encompasses 16.7 acres along warm water, unnamed tributaries to Pine Hill Branch. The Site is located approximately 3.5 miles southeast of Snow Camp and 6 miles north of Silk Hope in southern Alamance County near the Chatham County line (Figure 1, Appendix B).

Before construction, Site land use consisted of disturbed forest and agricultural land used for livestock grazing and hay production. Livestock had unrestricted access to Site streams, which had been relocated to the floodplain edge, ditched, impounded, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from stream banks and adjacent pastures. Approximately 60 percent of the stream channel was degraded, contributing to sediment export from the Site resulting from mechanical processes such as livestock hoof shear. In addition, streamside wetlands were cleared and drained by channel downcutting and land uses. Preconstruction Site conditions resulted in degraded water quality, a loss of aquatic habitat, reduced nutrient and sediment retention, and unstable channel characteristics (loss of horizontal flow vectors that maintain pools and an increase in erosive forces to channel bed and banks). Site restoration activities restored riffle-pool morphology aiding in energy dissipation, increased aquatic habitat, stabilized channel banks, and will greatly reduce sediment loss from channel banks.

1.3 Project Components and Structure

Site restoration activities generated 3058 Stream Mitigation Units (SMUs) and 0.76 Wetland Mitigation Units (WMUs) as the result of the following:

- 1738 linear feet of Priority I stream restoration
- 3299 linear feet of stream enhancement (Level II)
- 0.54 acre of riparian wetland restoration
- 0.44 acre of riparian wetland enhancement

Additional activities that occurred at the Site included the following.

- Installation of a marsh treatment area to treat drainage prior to entering UT1.
- Fencing the entire conservation easement by leaving some pre-existing fencing, removing fencing, and installing additional fencing.
- Planting 8.11 acres of the Site with 8600 stems (planted species and densities by zone are included in Table 5 [Appendix C]).
- Removing a small, abandoned farm pond by 1) notching the dam to dewater; 2) removal of the dam to the elevation of the adjacent floodplain; 3) excavating sediment that was unsuitable for channel bank construction; 4) backfilling areas of sediment removed with soil suitable for channel construction (as necessary); 5) excavation of the design channel, 6) stabilization of the channel with coir matting, seed, and mulch; and 7) installation of structures.

Site design was completed in February 2018. Construction started on July 25, 2018 and ended within a final walkthrough on September 6, 2018. The Site was planted in December 2018-January 2019. Completed project activities, reporting history, completion dates, project contacts, and background information are summarized in Tables 1-4 (Appendix A).

1.4 Success Criteria

Project success criteria have been established per the October 24, 2016, NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*.

1.4.1 Stream Success Criteria

From a mitigation perspective, several goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes stream success criteria.

- All streams must maintain an Ordinary High-Water Mark (OHWM), per RGL 05-05.
- Continuous surface flow must be documented each year for at least 30 consecutive days.
- Bank height ratio (BHR) cannot exceed 1.2 at any measured cross-section.
- Entrenchment ratio (ER) must be no less than 1.4 at any measured riffle cross-section.
- BHR and ER at any measure riffle cross-section should not change by more than 10% from baseline condition during any given monitoring period.
- The stream project shall remain stable and all other performance standards shall be met through four separate bankfull events, occurring in separate years, during the monitoring years 1-7.

1.4.2 Wetland Success Criteria

The following summarizes wetland success criteria.

• Saturation or inundation within the upper 12 inches of the soil surface for, at a minimum, 10 percent of the growing season during average climatic conditions

According to the *Soil Survey of Alamance County*, the growing season for Alamance County is from April 17 – October 22 (USDA 1960). However, the start date for the growing season is not typical for the Piedmont region; therefore, for this project, hydrologic success will be determined using data from March 1 - October 22 to represent the period of biological activity more accurately. Based on growing season information outlined in the *Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region* (USACE 2010), this will be confirmed annually by soil temperatures exceeding 41 degrees Fahrenheit at 12 inches depth and/or bud burst.

Target hydrological characteristics include saturation or inundation for 10 percent of the monitored period (March 1-October 22) during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may be used for comparison to the Site; however, reference gauge data will not be tied to success criteria. These areas are expected to support hydrophytic vegetation. A jurisdictional determination will be performed if wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring. The jurisdictional determination will not supersede monitoring data or overturn a failure in meeting success criteria; however, this information may be used by the IRT, at the discretion of the IRT, to make a final determination on Site wetland re-establishment success.

1.4.3 Vegetation Success Criteria

The following summarizes vegetation success criteria.

- Within planted portions of the Site, a minimum of 320 stems per acre must be present at year 3; and a minimum of 210 stems per acre must be present at year 7.
- Trees must average 7 feet in height at year 5, and 10 feet in height at year 7.
- Planted and volunteer stems are counted, provided they are included in the approved planting list for the Site; natural recruits not on the planting list may be considered by the IRT on a case-by-case basis.
- Any single species can only account for 50% of the required stems within any vegetation plot.

2.0 METHODS

Monitoring requirements and success criteria outlined in this plan follow the October 24, 2016 NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*. Monitoring will be conducted by Axiom Environmental, Inc. Annual monitoring reports of the data collected will be submitted to the NCDMS by Restoration Systems no later than December 31 of each monitoring year data is collected. The monitoring schedule is summarized in the following table.

Resource	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
Streams	Х	Х	Х		Х		Х
Wetlands	Х	Х	Х	Х	Х	Х	Х
Vegetation	Х	Х	Х		Х		Х
Macroinvertebrates			Х		Х		Х
Water Quality	Х	Х	Х	Х	Х	Х	Х
Visual Assessment	Х	Х	Х	Х	Х	Х	Х
Report Submittal	Х	Х	Х	Х	Х	Х	Х

Monitoring Schedule

2.1 Stream Monitoring

Annual monitoring will include development of channel cross-sections and substrate on riffles and pools (Figure 2, Appendix B). Data presented in graphic and tabular format include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, and 5) width-to-depth ratio. Longitudinal profiles were monitored for asbuilt; however, profiles will not be measured unless monitoring demonstrates channel bank or bed instability. In this case, longitudinal profiles may be required by the USACE along reaches of concern to track changes and demonstrate stability.

Stream Monitoring Summary

Parameter	Method	Schedule/Frequency	Number/Extent
Stream Profile	Full longitudinal survey	Asbuilt (unless otherwise required)	All restored stream channels
Stream Dimension	Cross-sections	Years 1, 2, 3, 5, and 7	10 cross-sections
	Visual Assessments	Yearly	All restored stream channels
Channel Stability	Bank Pins	Yearly Only if instabilit Yearly documented du monitoring	
	Additional Cross-sections	Yearly	Only if instability is documented during monitoring
Stream Hydrology	Continuous monitoring water level gauges and/or trail camera	Continuous recording through monitoring period	Two gauges on UT1 (upstream and downstream) and one trail camera on UT1 (downstream)
Water Quality	Water samples	Yearly	Two locations
Macroinvertebrates	Qual 4 sampling	Years 3, 5, and 7	Two locations

Stream measurements were not performed in year 4 (2022) in accordance with the monitoring schedule. Across the Site, all in-stream structures are intact and functioning as designed. The channel geometry compares favorably with the proposed conditions outlined in the Detailed Restoration Plan and as constructed. No stream areas of concern were identified during year 4 (2022) monitoring. Stream visual assessment results are documented in Tables 5A-5C (Appendix B). Tables for year 3 (2021) data and annual quantitative assessments are included in Appendix C.

2.2 Wetland Monitoring

Six groundwater monitoring gauges were installed within the drained pond area and the remaining wetland restoration areas to take measurements after hydrological modifications were performed at the Site (Figure 2, Appendix B). Hydrological sampling will continue throughout the entire year at intervals necessary to satisfy jurisdictional hydrology success criteria. In addition, an on-site rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions, and a trail camera was installed to confirm overbank flooding events. Growing season soil temperatures will also be documented using a continuously logging soil temperature probe, this data will be provided with wetland hydrology data.

Wetland Monitoring Summary

Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected
Wetland Restoration	Groundwater gauges	As-built, Years 1, 2, 3, 4, 5, 6, and 7	6 gauges spread throughout restored wetlands	Soil temperature at the beginning of each monitoring period, groundwater and rain data for each monitoring period

Summary of Monitoring Period/Hydrology Success Criteria by Year

Year	Soil Temperatures/Date Bud Burst Documented	Monitoring Period Used for Determining Success	10 Percent of Monitoring Period
2019 (Year 1)	March 1, 2019	March 1-October 22 (235 days)	24 Days
2020 (Year 2)	March 1, 2020	March 1-October 22 (235 days)	24 Days
2021 (Year 3)	March 1, 2021	March 1- October 22 (236 days)	24 Days
2022 (Year 4)	March 1, 2022*	March 1- October 22 (236 days)	24 Days

*An on-site soil temperature data logger installed 12 inches below the ground surface read 46.13°F on March 1, and the soil temperature remained well-above 41°F thereafter. Additionally, bud bursts were documented on February 28.

All six groundwater gauges met success criteria for the year 4 (2022) monitoring period. Year 4 (2022) groundwater gauge data and graphs are located in Appendix D.

2.3 Vegetation Monitoring

Planting occurred in December 2018-January 2019 within 8.11 acres of the Site and included 8600 stems. After planting was completed, an initial evaluation was performed to verify planting methods and to determine initial species composition and density.

In early January 2020, a winter-time visual assessment of the Site was performed, and it was determined that although Year 1 (2019) vegetation data, including random transects, showed a high density of trees, a light supplemental planting would help ensure the long-term success in several areas. On January 31, 2020, three areas that visually exhibited low stem density and/or poor vigor were supplementally planted (Figure 2, Appendix B). During the supplemental planting effort, 370 stems were planted across 1.20 acres (approximately 300 stems per acre). As the planting was designated for visual purposes and was not an effort to increase stem density data, no stems were planted within permanent vegetation plots.

Preparation included the application of 100 lbs of lime, 50 lbs of fertilizer, and 3 lbs of seed to stabilize bare areas. The following table lists species included in the supplemental planting list.

Species	Number of Stems
Tag Alder (Alnus serrulata) [@]	20
Chinkapin (Castanea pumila) [@]	20
Hackberry (Celtis occidentalis) [%]	50
Hawthorn (Crataegus marshallii)@	20
Crab Apple (Malus angustifolia) [@]	50
Red Mulberry (<i>Morus rubra</i>) [@]	100
Sycamore (Platanus occidentalis)*	50
Shumard Oak (Quercus shumardii) [@]	50
Total	370

2020 Supplemental Planting Species List

* Included in mitigation plan planting list

[%] Not included in mitigation plan planting list but meets target community

[®] Species selected based on lack of availability of mitigation plan planting list and target community species

In addition, three random vegetation transects (MY2 2000 Random Vegetation Transects) were measured after planting was complete to determine that those areas met the required stem densities; results indicated a range of stems per acre of 364 to 1012.

An assessment was made during early Fall 2018 to treat fescue within the Dry-Mesic Oak Hickory Forest planting zones to reduce competition with planted stems. Treatment was conducted in December 2018. Treatments of invasive plant species continued during 2019 throughout the Site. Japanese Stiltgrass and Tree-of-Heaven were high priorities during the 2019 invasive treatment season. Restoration Systems will continue to treat and monitor the Site for invasive species throughout the monitoring period.

Site Maintenance Report (2022)

Invasive Species Work	Maintenance work
07/08/2022 Johnson Grass, Cattail, Tree-of-Heaven, Privet, Multiflora Rose	None

2023 Planned Vegetation Maintenance

Restoration Systems continues to monitor fescue throughout the Site. Based on permanent and random vegetation monitoring plots and visual observations, planted stems are establishing within areas where fescue was a concern. Currently, no additional planting or fescue specific herbicide treatments are proposed.

Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected
Vegetation	Permanent vegetation plots 0.0247 acre (100 square meters) in size	As-built, Years 1, 2, 3, 5, and 7	8 plots spread across the Site	Species, height, location, planted vs. volunteer, and age
establishment and vigor	Random vegetation plots, 0.0247 acre (100 square meters) in size	plots, 0.0247 acre As-built, Years 1, 2, 2 plo (100 square meters) 3, 5, and 7 select		Species and height

Vegetation Monitoring Summary

During quantitative vegetation sampling, 8 sample plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008). According to the mitigation monitoring plan, vegetation monitoring was not scheduled to take place during Year 4 (2022). However, vegetation measurements were cataloged for riparian buffer monitoring. These results are included in the Riparian Buffer Year 4 (2022) Monitoring Report (Appendix F) and indicate an average of 364 planted stems per acre (excluding live-stakes) for the eight permanent plots and 405 total stems per acre across the Site, including three temporary plots. No vegetation areas of concern were observed during year 4 (2022). Vegetation visual assessment results are documented in Table 6 (Appendix B).

3.0 REFERENCES

- Griffith, G.E., J.M. Omernik, J.A. Comstock, M.P. Schafale, W.H. McNab, D.R. Lenat, T.F. MacPherson, J.B. Glover, and V.B. Shelbourne. 2002. Ecoregions of North Carolina and South Carolina. U.S. Geological Survey, Reston, Virginia.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS). 2014. Stream and Wetland Mitigation Monitoring Guidelines. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2005. Cape Fear River Basinwide Water Quality Plan. Available: https:// https://deq.nc.gov/about/divisions/water-resources/planning/basinplanning/water-resource-plans/cape-fear-2005 [December 8, 2016]. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.

- North Carolina Division of Water Resources (NCDWR). 2016. Standard Operating Procedures for Collection and Analysis of Benthic Macroinvertebrates (Version 5.0). (online). Available: <u>https://files.nc.gov/ncdeq/Water%20Quality/Environmental%20Sciences/BAU/NCDWRMacroin</u> <u>vertebrate-SOP-February%202016_final.pdf</u>
- North Carolina Division of Water Quality (NCDWQ). 2009. Small Streams Biocriteria Development. Available: <u>http://portal.ncdenr.org/c/document library/get file?uuid=2d54ad23-0345-4d6e-82fd-04005f48eaa7&groupId=38364</u>
- North Carolina Ecosystem Enhancement Program (NCEEP). 2009. Cape Fear River Basin Restoration Priorities 2009 (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid= 864e82e8-725c-415e-8ed9-c72dfcb55012&groupId=60329
- North Carolina Stream Functional Assessment Team. (NC SFAT 2015). N.C. Stream Assessment Method (NC SAM) User Manual. Version 2.1.
- North Carolina Wetland Functional Assessment Team. (NC WFAT 2010). N.C. Wetland Assessment Method (NC WAM) User Manual. Version 4.1.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- Simon A, Hupp CR. 1986. Geomorphic and Vegetative Recovery Processes Along Modified Tennessee Streams: An Interdisciplinary Approach to Disturbed Fluvial Systems. Forest Hydrology and Watershed Management. IAHS-AISH Publ.167.
- United States Department of Agriculture (USDA). 2016. Web Soil Survey (online). Available: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx [August 2016].
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.
- United States Department of Agriculture (USDA). 2021. Natural Resources Conservation Service National Weather and Climate Center. AgACIS Climate Data. Burlington Regional Airport WETS Station (online). Available: http://agacis.rcc-acis.org

Appendix A Background Tables

Table 1. Project Components and Mitigation Units Table 2. Project Activity and Reporting History Table 3. Project Contacts Table Table 4. Project Attributes Table

Reach ID	Stream Stationing/ Wetland Type	Existing Footage/ Acreage	Mitigation Plan Footage/ Acreage	Constructed Footage/ Acreage	Restoration Level	Restoration or Restoration Equivalent	Mitigation Ratio	Mitigation Credits	Comment
UT 1	00+00 to 16+99	1829	1699	1699	Restoration	1699	1:1	1699	
UT 1	16+99 to 27+96	1097	1060	1097	EII	1097	2.5:1	439	
UT 2	00+00 to 01+68	168	168	168	EII	168	2.5:1	67	
UT 2	01+68 to 02+07	39	43	39	Restoration	39	1:1	39	
UT 3	00+00 to 22+98	2298	2197	2298*	EII	2298-80-144- 40= 2034	2.5:1	814	80 If and 40 If of UT3 are not credit generating due to crossings and drainage easement. 144 If are not credit generating due to lack of control of south bank and drainage easement.
Wetland s	Riparian Riverine		0.54	0.54	Restoration	0.54	1:1	0.54	Wetland Restoration
Wetland s	Riparian Riverine	0.52	0.44	0.44	Enhancement	0.44	2:1	0.22	Wetland Enhancement

Table 1. Project Components and Mitigation Credits - Major Hill Restoration Site

Length & Area Summations by Mitigation Category							
Restoration Level	Stream (linear footage)	Riparian Wetland (acreage)					
Restoration	1738	0.54					
Enhancement (Level II)	3299*						
Enhancement		0.44**					

Table 1 continued. Project Components and Mitigation Credits - Major Hill Restoration Site

* An additional 264 linear feet of stream enhancement (level II) is proposed outside of the easement (at road crossings), or the sponsor controls only one bank of the stream, and is therefore not included in this total or in mitigation credit calculations.

**Approximately 0.08 acre of existing, degraded wetland will not be enhanced as the result of the design channel crossing the wetland area.

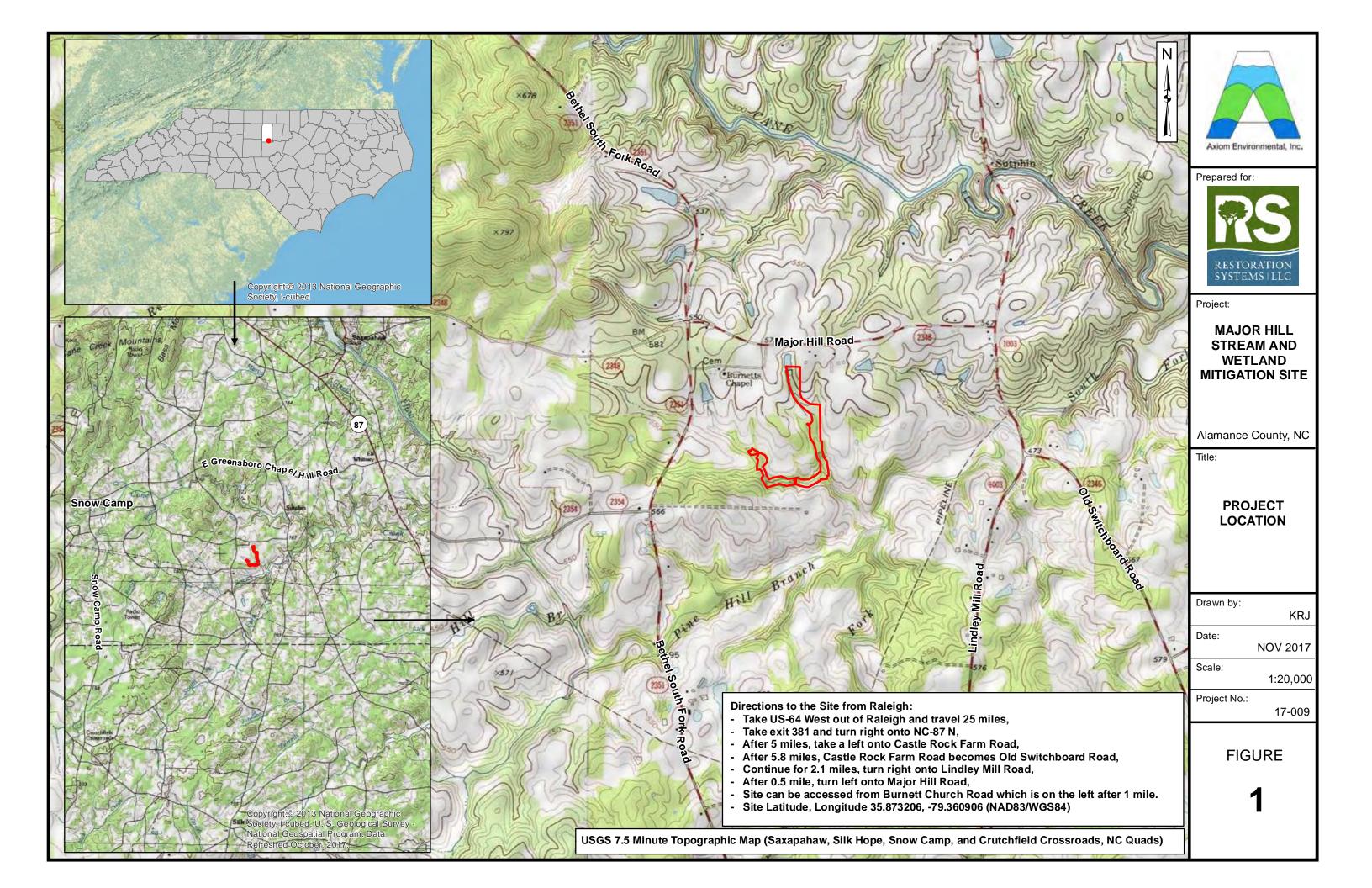
Overall Assets Sur	nmary
Asset Category	Overall Credits
Stream	3057.600
Riparian Riverine Wetland	0.760

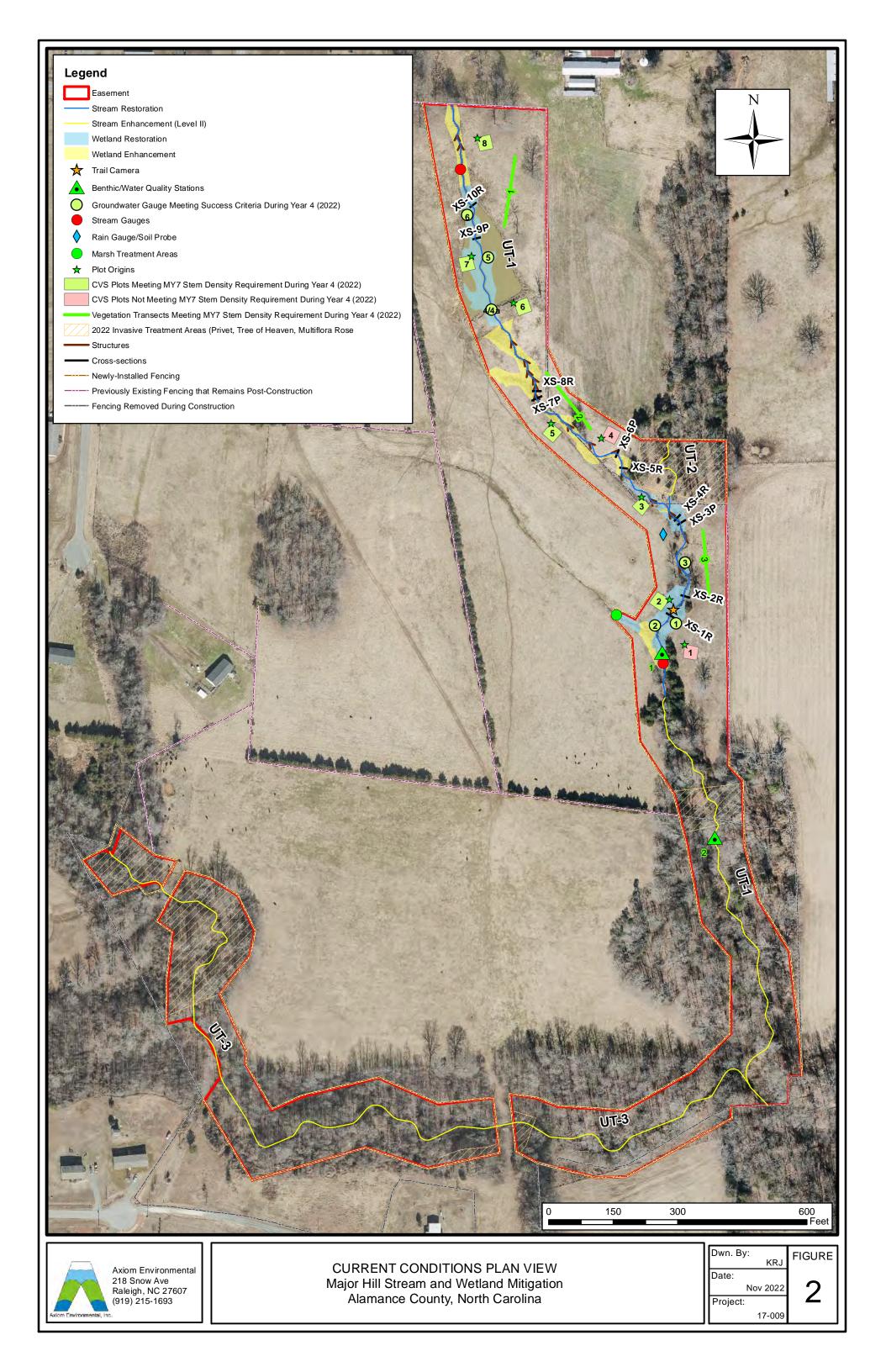
Activity or Deliverable	Data Collection Complete	Completion or Delivery
Technical Proposal Issue Date (RFP No. 16-006990)	September 16, 2016	September 16, 2016
Institution Date (NCDMS Contract No. 7193)		May 22, 2017
Mitigation Plan		February 2018
404 Permit Date		June 28, 2018
Construction Plans		July 2018
Site Construction		July 25-September 6, 2018
Planting		December 2018-January 2019
Asbuilt Stream Data Collection	September 19, 2018	
Asbuilt Vegetation Data Collection	January 8, 2019	
Asbuilt Baseline Monitoring Report		March 2019
MY1 (2019) Vegetation Data Collection	September 9, 2019	
MY1 (2019) Stream Data Collection	September 10, 2019	
MY1 (2019) Monitoring Report	October 2019	November 2019
Supplemental Planting		January 31, 2020
MY 2 (2020) Vegetation Data Collection	October 2020	
MY 2 (2020) Stream Data Collection	July/October 2020	
MY 2 (2020) Monitoring Report	October 2020	November 2020
MY 3 (2021) Vegetation Data Collection	October 2021	
MY 3 (2021) Stream Data Collection	March 2021	
MY 3 (2021) Monitoring Report	October 2021	January 2022
MY 4 (2022) Vegetation Data Collection	NA	
MY 4 (2022) Stream Data Collection	NA	
MY 4 (2022) Monitoring Report	October 2022	February 2023

Table 2. Project Activity and Reporting History - Major Hill Restoration Site

Table 3. Project Contacts Table - Major Hill Restoration Site

Full Delivery Provider	Construction Contractor
Restoration Systems	Land Mechanic Designs
1101 Haynes Street, Suite 211	780 Landmark Road
Raleigh, North Carolina 27604	Willow Spring, NC 27592
Worth Creech 919-755-9490	Lloyd Glover 919-639-6132
Designer	Planting Contractor
Axiom Environmental, Inc.	Carolina Silvics, Inc.
218 Snow Avenue	908 Indian Trail Road
Raleigh, NC 27603	Edenton, NC 27932
Grant Lewis 919-215-1693	Mary-Margaret McKinney 252-482-8491
Construction Plans and Sediment and	Asbuilt Surveyor
Erosion Control Plans	K2 Design Group
Sungate Design Group, PA	5688 US Highway 70 East
915 Jones Franklin Road	Goldsboro, NC 27534
Raleigh, NC 27606	John Rudolph 919-751-0075
Joshua G. Dalton, PE 919-859-2243	
	Baseline & Monitoring Data Collection
	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693


	ject Information					
Project Name	Ma	jor Hill Restoration Sit	e			
Project County	Alamai	nce County, North Car	olina			
Project Area (acres)		16.7				
Project Coordinates (latitude & latitude)	3	5.873206, -79.360906				
Planted Area (acres)		8.11				
Project Water	shed Summary Information					
Physiographic Province		Piedmont				
Project River Basin		Cape Fear				
USGS HUC for Project (14-digit)		03030002050050				
NCDWR Sub-basin for Project		03-06-04				
Project Drainage Area (acres)		17 to 445				
Percentage of Project Drainage Area that is Impervious		<2%				
CGIA Land Use Classification	Managed Herbace	ous Cover & Mixed Up	and Hardwoods			
Reach	Summary Information					
Parameters	UT 1	UT 2	UT 3			
Length of reach (linear feet)	2796	207	2298			
Valley Classification & Confinement	Alluvial, m	oderately confined to	confined			
Drainage Area (acres)	71.7	17.2	444.7			
NCDWR Stream ID Score	20.25 – 33.5					
Perennial, Intermittent, Ephemeral	Intermittent/Perennial	Intermittent	Perennial			
NCDWR Water Quality Classification		WS-V, NSW				
Existing Morphological Description (Rosgen 1996)	Cg5	C4/5	С3			
Proposed Stream Classification (Rosgen 1996)	C/E 4	C4/5	С3			
Existing Evolutionary Stage (Simon and Hupp 1986)	III/IV	Ш	I			
Underlying Mapped Soils	Efland silt Ioam, George Ioam, Worsha	ville silt loam, Herndo Im sandy loam, Local A				
Drainage Class	Well-drained, well-draine poo	d, well-drained, poorl rly drained, respective				
Hydric Soil Status	Nonhydric, nonhydr	ric, nonhydric, nonhyd respectively	lric, hydric, hydric,			
Slope	0.0241	0.0256	0.0130			
FEMA Classification		NA				
Native Vegetation Community	Piedmont Alluvial Forest/Dry-Mesic Oak-Hickory Forest					
Watershed Land Use/Land Cover (Site)	-	45% forest, 35% agricultural land, 20% low density residential/impervious surface				
Watershed Land Use/Land Cover (Cedarock Reference Channel)		% agricultural land, <5 ential/impervious surf				
Percent Composition of Exotic Invasive Vegetation		<5%				


Table 4. Project Attribute Table - Major Hill Restoration Site

We	tland Summary Information
Parameters	Wetlands
Wetland acreage	0.54 acre drained or impounded & 0.44 acre degraded
Wetland Type	Riparian riverine
Mapped Soil Series	Worsham and Local Alluvial Land
Drainage Class	Poorly drained
Hydric Soil Status	Hydric
Source of Hydrology	Groundwater, stream overbank
Hydrologic Impairment	Incised streams, compacted soils, livestock
Native Vegetation Community	Piedmont/Low Mountain Alluvial Forest
% Composition of Exotic Invasive Vegetation	<5%
Restoration Method	Hydrologic, vegetative
Enhancement Method	Vegetative

Appendix B Visual Assessment Data

Figure 1. Project Location Figure 2. Current Conditions Plan View Tables 5A-5B. Visual Stream Morphology Stability Assessment Table 6. Vegetation Condition Assessment

Table 5A Reach ID Assessed Length

Visual Stream Morphology Stability Assessment Major Hill UT-1 1699

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	71	71			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	70	70			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	70	70			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	70	70			100%			
		2. Thalweg centering at downstream of meander (Glide)	70	70			100%			
		•								
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
	_			Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	26	26			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	26	26			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	26	26			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	26	26			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	26	26			100%			

Table 5B Reach ID Assessed Length

<u>Visual Stream Morphology Stability Assessment</u> Major Hill UT-2 39

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	2	2			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	2	2			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	2	2			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	2	2			100%			
		2. Thalweg centering at downstream of meander (Glide)	2	2			100%			
		•								
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
	_			Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	0	0			NA			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			NA			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	0	0			NA			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			NA			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	0	0			NA			

Table 6 Vegetation Condition Assessment

Major Hill

Planted Acreage ¹	8.1					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
			Total	0	0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	none	0	0.00	0.0%
	Cumulative Tota					0.0%

Easement Acreage ²	16.7					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	None	1000 SF	none	0	0.00	0.0%
5. Easement Encroachment Areas ³	None	none	none	0	0.00	0.0%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in *red italics* are of particular interest given their extreme risk/threat level for mapping as points where <u>isolated</u> specimens are found, particularly or situations where the condition for an area is somewhere between isolated specimes and dense, discreet patches. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be listed as a map inset, in legend items if the number of species are limited or in the analytic section of the executive summary.

Appendix C Stream Geomorphology Data

Tables 7A-7B. Baseline Stream Data Summary Tables 8A-8D. MY1-3 Monitoring Data (Dimensional Morphology Summary & Stream Reach Data Summary) Table 9. Water Quality Data

Table 7a.	Baseline Stream Data Summary (UT 1 Upstream)
Major Hill	Mitigation Project - NCDMS Project Number 100015

Parameter	Gauge]	Regional Cı	urve	Pre-	Existing Up	(Condit stream)		'1		Reference	e Reach(e	es) Data			sign (UT Ipstream		М	onitorinį	g Baselin	e (UT 1	Upstrea	m)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD	n
BF Width (ft)					3.8		5.6	6.4		8.0		9.6	12.1		5.6	6.4	6.0	6.0		10.9	11.8		3
Floodprone Width (ft)					11.0		27.0	48.0		15		75	140		20	60	40	23		40	40		3
BF Mean Depth (ft)					0.3		0.5	0.7		0.8		1.1	1.4		0.4	0.5	0.4	0.3		0.5	0.6		3
BF Max Depth (ft)					0.7		0.9	1.3		1.1		1.7	2.0		0.5	0.7	0.6	0.7		0.8	1.1		3
BF Cross Sectional Area (ft ²)					2.6		2.6	2.6		8.0		11.4	14.7		2.6	2.6	2.6	3.0		3.5	7.1		3
Width/Depth Ratio					5.4		13.4	27.0		8.0		9.6	15.1		12.0	16.0	14.0	12.0		19.6	33.9		3
Entrenchment Ratio					1.4		5.8	12.6		1.9		7.1	13.0		3.6	9.3	6.6	3.4		3.7	3.8		3
Bank Height Ratio					1.0		1.4	1.7		1.0		1.2	1.8		1.0	1.3	1.2	1.0		1.0	1.3		3
Profile												8				8							1
Riffle length (ft)																		5		16	47		3
Riffle slope (ft/ft)										0.0100		0.0207	0.0576		0.0268	0.0401	0.0357	0.0000		0.0252	0.0539		3
Pool length (ft)																		4.0		13.0	28.0		3
Pool Max depth (ft)										1.5		2.3	2.7		0.6	0.9	0.8	1.3		2.0	2.5		3
Pool spacing (ft)										22.0		40.8	81.0		18.0	48.0	24.0	18.0		24.0	48.0		3
Pattern																							
Channel Beltwidth (ft)										17		26.3	38		18	36	24	18		24	36		
Radius of Curvature (ft)										9		23.6	113		12	60	18	12		18	60		
Rc:Bankfull width (ft/ft)										0.8		2.4	10.3		2	10	3	2		3	10		
Meander Wavelength (ft)										10		65.7	116		36	72	51	36		51	72		
Meander Width ratio										1.5		2.7	4.7		3	6	4	3		4	6		
Transport parameters																							
Reach Shear Stress (competency) lbs/ft ²																							
Max part size (mm) mobilized at bankfull																							
Stream Power (transport capacity) W/m^2																							<u> </u>
Additional Reach Parameters																							L
Rosgen Classification							Cg 5					Eb 5				E/C 4				E/C-	tvpe		
Bankfull Velocity (fps)							080					200				2/0 .					71		
Bankfull Discharge (cfs)							9.5				2	8.8 - 60.6				9.5				9.	5		
Valley Length (ft)							,																
Channel Thalweg Length (ft)					1					i –					1			1					
Sinuosity					1		1.07			i –	1	.2 - 1.46			1	1.08		1		1.0	08		
Water Surface Slope (ft/ft)					1		0.0225					53 - 0.025	58		1	0.0223				0.0			
BF slope (ft/ft)																							
Bankfull Floodplain Area (acres)																							
% of Reach with Eroding Banks																							
Channel Stability or Habitat Metric																							
Biological or Other																							

Table 7b.	Baseline Stream Data Summary (UT 1 Downstream)	
Major Hill I	Mitigation Project - NCDMS Project Number 100015	

Parameter	Gauge]	Regional C	urve	Pre-	Existing Dow	g Condit Anstrean		1		Reference	e Reach(e	s) Data			sign (UT wnstrear		Mo	nitoring	Baseline	(UT 1 D	ownstre	am)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD	n
BF Width (ft)					4.9		6.7	8.7		8.0		9.6	12.1		6.8	7.8	7.3	8.6		10.3	11.8		3
Floodprone Width (ft)					9.0		14.0	21.0		15		75	140		25	75	50	22		40	40		3
BF Mean Depth (ft)					0.4		0.6	0.8		0.8		1.1	1.4		0.4	0.8	0.6	0.4		0.6	0.6		3
BF Max Depth (ft)					0.7		0.9	1.2		1.1		1.7	2.0		0.6	0.8	0.7	0.7		0.9	1.2		3
BF Cross Sectional Area (ft ²)					3.8		3.8	3.8		8.0		11.4	14.7		3.8	3.8	3.8	3.5		5.8	7.5		3
Width/Depth Ratio					6.1		13.1	21.8		8.0		9.6	15.1		12.0	16.0	14.0	18.0		18.0	21.0		3
Entrenchment Ratio					1.4		2.2	4.3		1.9		7.1	13.0		3.7	9.6	6.9	2.6		3.4	3.9		3
Bank Height Ratio					1.6		2.2	2.8		1.0		1.2	1.8		1.0	1.3	1.2	1.0		1.0	1.0		3
Profile																8		8					1
Riffle length (ft)																		5		16	47		1
Riffle slope (ft/ft)										0.0100		0.0207	0.0576		0.0000	0.0297	0.0264	0.0000		0.0252	0.0539		1
Pool length (ft)																		4.0		13.0	28.0		1
Pool Max depth (ft)										1.5		2.3	2.7		0.7	1.1	1.0	1.7		1.7	1.7		1
Pool spacing (ft)										22.0		40.8	81.0		21.9	58.4	29.2	18.0		24.0	48.0		1
Pattern																							
Channel Beltwidth (ft)										17		26.3	38		21.9	43.8	29.2	22		29	44		
Radius of Curvature (ft)										9		23.6	113		14.6	72.9	21.9	14		22	73		
Rc:Bankfull width (ft/ft)										0.8		2.4	10.3		2	10	3	2		3	10		
Meander Wavelength (ft)										10		65.7	116		43.8	87.5	62	44		62	88		
Meander Width ratio										1.5		2.7	4.7		3	6	4	3		4	6		
Transport parameters																							
Reach Shear Stress (competency) lbs/ft ²																							
Max part size (mm) mobilized at bankfull																							
Stream Power (transport capacity) W/m^2																							
Additional Reach Parameters																							<u> </u>
Rosgen Classification							Cg 5					Eb 5				E/C 4				E/C-	type		
Bankfull Velocity (fps)																							
Bankfull Discharge (cfs)							14.2				28	8.8 - 60.6				14.2				14	.2		
Valley Length (ft)																							
Channel Thalweg Length (ft)																							
Sinuosity							1.26				1	.2 - 1.46				1.12				1.			
Water Surface Slope (ft/ft)						().0147				0.00	53 - 0.025	58			0.0165				0.0	195		
BF slope (ft/ft)																							
Bankfull Floodplain Area (acres)																							
% of Reach with Eroding Banks					ļ																		
Channel Stability or Habitat Metric																							
Biological or Other																							

Table 8a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Major Hill Mitigation Project - NCDMS Project Number 100015

		Cre	oss Section	n 1 (UT 1	Downstre	am)			Cre	oss Section	n 2 (UT 1	Downstre	am)			Cre	oss Section	n 3 (UT 1]	Downstre	am)			Cre	oss Section	n 4 (UT 1	Downstrea	am)	
Parameter				Riffle							Riffle							Pool							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5
BF Width (ft)	11.8	11.2	12.6	12.7				8.6	7.4	7.8	7.7				13.0	12.5	13.1	12.6				10.3	10.4	12.8	10.8			
Floodprone Width (ft) (approx)	40.0	40.0	40.0	40.0				22.0	22.0	22.0	22.0				NA	NA	NA	NA				40.0	40.0	40.0	40.0			
BF Mean Depth (ft)	0.6	0.7	0.6	0.6				0.4	0.5	0.4	0.4				0.6	0.7	0.6	0.7				0.6	0.6	0.5	0.5			
BF Max Depth (ft)	1.2	1.2	1.2	1.2				0.7	0.7	0.7	0.7				1.7	1.6	1.6	1.7				0.9	1.1	1.1	1.1			
Low Bank Height	1.2	1.3	1.2	1.3				0.7	0.8	0.7	0.7				1.7	1.7	1.7	1.3				0.9	1.1	1.1	1.1			
BF Cross Sectional Area (ft ²)	7.5	7.5	7.5	7.5				3.5	3.5	3.5	3.5				8.4	8.4	8.4	8.4				5.8	5.8	5.8	5.8			
Width/Depth Ratio	18.6	16.7	21.2	21.6				21.1	15.6	17.4	17.1				NA	NA	NA	NA				18.3	18.6	28.2	19.9			
Entrenchment Ratio	3.4	3.6	3.2	3.1				2.6	3.0	2.8	2.9				NA	NA	NA	NA				3.9	3.8	3.1	3.7			1
Bank Height Ratio*	1.0	1.1	1.0	1.1				1.0	1.1	1.0	1.0				1.0	1.1	1.1	<1				1.0	1.0	1.0	1.0			
d50 (mm)	25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7			

*Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018).

Table 8b. Monitoring Data - Stream Reach Data Summary Major Hill Mitigation Project - NCDMS Project Number 100015

Major Hill Mitigation Project - NCDM Parameter			eline (UT 1	1 Downst	ream)			M	Y-1 (UT 1	Downstre	am)		1	МУ	-2 (UT 1	Downstre	am)			M	Y-3 (UT 1	Downstre	am)			Μ	Y-5 (UT ⁻	l Downstr	eam)			M	-7 (UT 1	Downstrea	m)	
T ut uniteter		Dust		1 20 000	(i cuiii)				11(011	201115010	,				- (011	Downstre						201115010	uiii)				10(01)		cumj				/(011	Downstrea		
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)	8.6		10.3	11.8		3	7.4		10.4	11.2		3	7.8		12.6	12.8		3	7.7		10.8	12.7														ı
Floodprone Width (ft)	22		40	40		3	22		40	40		3	22		40	40		3	22		40	40														í
BF Mean Depth (ft)	0.4		0.6	0.6		3	0.5		0.6	0.7		3	0.4		0.5	0.6		3	0.4		0.5	0.6														<u> </u>
BF Max Depth (ft)	0.7		0.9	1.2		3	0.7		1.1	1.2		3	0.7		1.1	1.2		3	0.7		1.1	1.2														L
BF Cross Sectional Area (ft ²)	3.5		5.8	7.5		3	3.5		5.8	7.5		3	3.5		5.8	7.5		3	3.5		5.8	7.5														1
Width/Depth Ratio	18.0		18.0	21.0		3	15.6		16.7	18.6		3	17.4		21.2	28.2		3	19.3		20.1	21.5														í
Entrenchment Ratio	2.6		3.4	3.9		3	3.0		3.6	3.8		3	2.8		3.1	3.2		3	2.9		3.1	3.7														í
Bank Height Ratio	1.0		1.0	1.0		3	1.0		1.1	1.1		3	1.0		1.0	1.0		3	1.0		1.0	1.0														i
	Pro	file	-	•	•	-		•	-	•	-	•	-	-	-	•	-	-	-	-	-	-	-		-		-	-	-	-		-	-	· · · · · ·	I	
Riffle length (ft)	5		16	47		1	1																													
Riffle slope (ft/ft)	0.0000		0.0252	0.0539		1	1																													
Pool length (ft)	4.0		13.0	28.0		1	1																													
Pool Max depth (ft)	1.7		1.7	1.7		1	1																													
Pool spacing (ft)	18.0		24.0	48.0		1	1							D	1 .		•		1		1	C 1 1	1/1	1	1	1 1	1. 1		1. (1. ID7	-						
	Patt	tern					1							Profile sur	veys durn	ng the strea	im monito	oring period	a are not	required, ur	ness evide	nce of bed	and/or bai	ik instadi	liity is obs	erved and	the data is	requested	by the IR	•						
Channel Beltwidth (ft)	22		29	44			1																													
Radius of Curvature (ft)	14		22	73			1																													
Rc:Bankfull width (ft/ft)	2		3	10]																													
Meander Wavelength (ft)	44		62	88																																
Meander Width ratio	3		4	6																																
					_																															
													-		Addi	tional Rea	ch Paran	neters							_						_					
Rosgen Classification			E/C	C type																					_											
Channel Thalweg Length (ft)																																				
Sinuosity				.12																																
Water Surface Slope (Channel) (ft/ft)			0.0	0195																																
BF slope (ft/ft)		•						_	_					_							-						_		_							
Ri%/RU%P%G%/S%																																				
SC%/SA%/G%/C%/B%BE%																																				<u> </u>
d16/d35/d50/d84/d95																																				
% of Reach with Eroding Banks																																				
Channel Stability or Habitat Metric																																				
Biological or Other																																				

Table 8c. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Major Hill Mitigation Project - NCDMS Project Number 100015

		С	ross Section	on 5 (UT 1	1 Upstrea	m)			С	ross Secti	on 6 (UT 1	l Upstrea	m)			C	ross Secti	on 7 (UT 1	l Upstrea	n)			С	ross Sectio	on 8 (UT 1	l Upstrea	n)	
Parameter				Riffle							Pool							Pool							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5-
BF Width (ft)	11.8	11.8	12.3	12.7				8.9	9.9	10.0	10.5				7.4	9.5	6.9	7.2				6.0	5.7	6.5	6.5			
Floodprone Width (ft) (approx)	40.0	40.0	40.0	40.0				NA	NA	NA	NA				NA	NA	NA	NA				23.0	23.0	23.0	23.0			
BF Mean Depth (ft)	0.6	0.6	0.6	0.6				1.0	0.9	0.9	0.9				1.6	1.2	1.7	1.6				0.5	0.5	0.5	0.5			
BF Max Depth (ft)	1.1	1.2	1.1	1.2				2.0	2.1	2.0	2.2				2.5	2.4	2.0	2.4				0.8	0.9	0.9	0.9			
Low Bank Height	1.1	1.2	1.1	1.1				2.0	2.2	2.2	2.4				2.5	2.5	2.2	2.6				0.8	0.9	1.0	0.8			
BF Cross Sectional Area (ft ²)	7.1	7.1	7.1	7.1				9.1	9.1	9.1	9.1				11.7	11.7	11.7	11.7				3.0	3.0	3.0	3.0			
Width/Depth Ratio	19.6	19.6	21.3	22.8				NA	NA	NA	NA				NA	NA	NA	NA				12.0	10.8	14.1	14.0			
Entrenchment Ratio	3.4	3.4	3.3	3.1				NA	NA	NA	NA				NA	NA	NA	NA				3.8	4.0	3.5	3.5			
Bank Height Ratio*	1.0	1.0	1.0	<1				1.0	1.0	1.1	1.1				1.0	1.0	1.1	1.1				1.0	1.0	1.1	<1			
d50 (mm)	25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7			

		C	ross Sectio	on 9 (UT 1	l Upstrea	n)			Cr	oss Sectio	on 10 (UT	1 Upstrea	m)	
Parameter				Pool							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)	7.0	9.4	8.0	11.8				10.9	11.2	13.3	9.4			
Floodprone Width (ft) (approx)	NA	NA	NA	NA				40.0	40.0	40.0	40.0			
BF Mean Depth (ft)	0.7	0.5	0.6	0.4				0.3	0.3	0.3	0.4			
BF Max Depth (ft)	1.3	1.2	1.3	1.2				0.7	0.6	0.6	0.6			
Low Bank Height	1.3	1.3	1.3	1.3				0.7	0.6	0.6	0.5			
BF Cross Sectional Area (ft ²)	4.9	4.9	4.9	4.9				3.5	3.5	3.5	3.5			
Width/Depth Ratio	NA	NA	NA	NA				33.9	35.8	50.5	25.0			
Entrenchment Ratio	NA	NA	NA	NA				3.7	3.6	3.0	4.3			
Bank Height Ratio*	1.0	1.1	1.0	1.1				1.0	1.0	1.0	<1			
d50 (mm)	25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7			

*Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018).

Table 8d. Monitoring Data - Stream Reach Data Summary

Major Hill Mitigation Project - NCDMS Project Number 100015

Parameter	S Project 1	Bas	eline (UT	1 Upstrea	m)			MY	-1 (UT 1	Upstreau	n)			Ν	1Y-2 (UT	l Upstream)			М	Y-3 (UT 1	l Upstrea	m)			Μ	Y-5 (UT 1	Upstrear	n)			Μ	Y-7 (UT	l Upstrea	ı)
			(01	- opsilon)				- (0	<u>- p</u>	/										- opsilon)					- post- cm	/				- (0-	Patron	-)
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD n
BF Width (ft)	6.0		10.9	11.8		3	5.7		11.2	11.8		3	6.5		12.3	13.3	3	6.5		9.4	12.7		3											
Floodprone Width (ft)	23		40	40		3	23		40	40		3	23		40	40	3	23		40	40		3											
BF Mean Depth (ft)	0.3		0.5	0.6		3	0.3		0.5	0.6		3	0.3		0.5	0.6	3	0.4		0.5	0.6		3											
BF Max Depth (ft)	0.7		0.8	1.1		3	0.6		0.9	1.2		3	0.6		0.9	1.1	3	0.6		0.9	1.1		3											
BF Cross Sectional Area (ft ²)	3.0		3.5	7.1		3	3.0		3.5	7.1		3	3.0		3.5	7.1	3	3.0		3.5	7.1		3											
Width/Depth Ratio	12.0		19.6	33.9		3	10.8		19.6	35.8		3	14.1		21.3	50.5	3	14.1		22.7	25.2		3											
Entrenchment Ratio	3.4		3.7	3.8		3	3.4		3.6	4.0		3	3.0		3.3	3.5	3	3.1		3.5	4.3		3											
Bank Height Ratio	1.0		1.0	1.3		3	1.0		1.0	1.0		3	1.0		1.0	1.1	3	0.8		1.1	1.3		3											
	Prof	ïle																																
Riffle length (ft)	5		16	47		3																												
Riffle slope (ft/ft)	0.0000		0.0252			3																												
Pool length (ft)	4.0		13.0	28.0		3																												
Pool Max depth (ft)	1.3		2.0	2.5		3																												
Pool spacing (ft)	18.0		24.0	48.0		3								Profile su	rvove duri	a the stream	monitoring peri	od are not i	equired un	less evider	nce of bed	and/or bar	k instahil	ity is obser	ved and th	a data is r	pauested h	w the IRT						
	Patte	ern												i ionie su	i veys duin	ig the stream	monitoring peri		icquirea, un				K mstaon	ity 15 0050	veu anu u	ie data 15 iv	questeu b	y the fix f	•					
Channel Beltwidth (ft)	18		24	36																														
Radius of Curvature (ft)	12		18	60																														
Rc:Bankfull width (ft/ft)	2		3	10																														
Meander Wavelength (ft)	36		51	72																														
Meander Width ratio	3		4	6																														
															Addi	ional Reach	Parameters																	
Rosgen Classification			E/C	type											Addi	ional Reach	Parameters																	
Rosgen Classification Channel Thalweg Length (ft)			E/C	type											Addi	ional Reach	Parameters																	
Channel Thalweg Length (ft)															Addi	ional Reach	Parameters																	
5			1.0)8											Addi	ional Reach	Parameters																	
Channel Thalweg Length (ft) Sinuosity Water Surface Slope (Channel) (ft/ft))8											Addi	ional Reach	Parameters																	
Channel Thalweg Length (ft) Sinuosity			1.0)8											Addi	ional Reach	Parameters																	
Channel Thalweg Length (ft) Sinuosity Water Surface Slope (Channel) (ft/ft) BF slope (ft/ft)			1.0)8											Addi	ional Reach	Parameters																	
Channel Thalweg Length (ft) Sinuosity Water Surface Slope (Channel) (ft/ft) BF slope (ft/ft) Ri%/RU%P%G%/S%			1.0)8											Addi	ional Reach	Parameters																	
Channel Thalweg Length (ft) Sinuosity Water Surface Slope (Channel) (ft/ft) BF slope (ft/ft) Ri%/RU%P%G%/S% SC%/SA%/G%/C%/B%BE%			1.0)8											Addi	ional Reach	Parameters																	
Channel Thalweg Length (ft) Sinuosity Water Surface Slope (Channel) (ft/ft) BF slope (ft/ft) Ri%/RU%P%G%/S% SC%/SA%/G%/C%/B%BE% d16/d35/d50/d84/d95			1.0)8											Addi	ional Reach	Parameters																	

ach Parameters			
	 -	 	

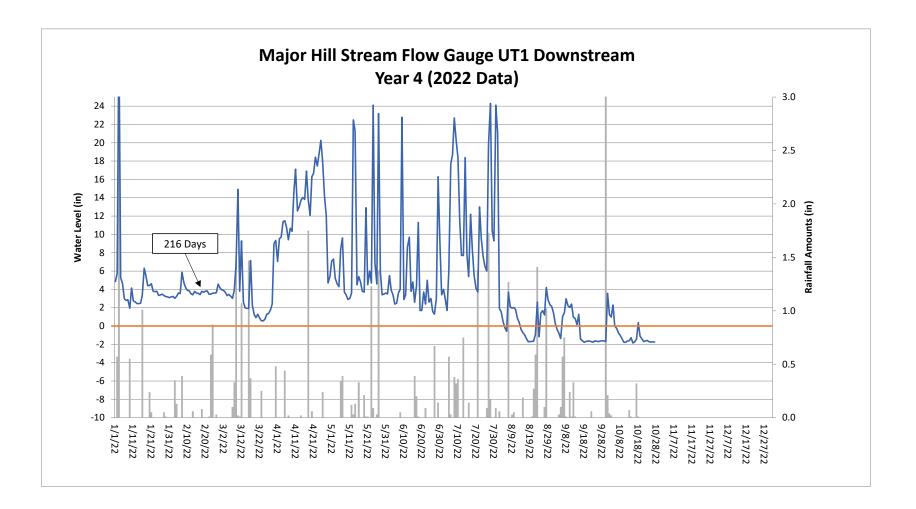
		Preconst	ruction		Year 1	(2019)	Year 2	(2020)	Year 3	(2021)	Year 4 (2022)
	Upst	ream	Down	stream	Upstream	Down- stream	Upstream	Down- stream	Upstream	Down- stream	Upstream	Down- stream
Parameter	July 28, 2017	August 14, 2017	July 28, 2017	August 14, 2017	November 20, 2019	November 20, 2019	October 28, 2020	October 28, 2020	May 19, 2021	May 19 2021	November 8, 2022	November 8, 2022
TDS (ppm)	110.1	147	62.6	86.8	394	179	164.0	122.3	94.7	113.6	115.1	133.4
TDS (mg/l)	109.1	149	64.6	83.5	397	179	168.3	131.3	98.2	120.1	95.2	117.0
Conductivity (μS/cm)	159.2	215	92.1	128.3	557	252	242.1	186.9	135.4	162.3	151.3	107.6
Temperature (°C)	25.4	22.6	24.6	22.1	8	6.9	19.6	19.7	22.9	15.5	8.3	7.2
DO (mg/l)	-	1.93	-	3.06	-	-	5.36	7.64	5.68	7.16	6.36	7.31
DO (ppm)	-	1.06	-	2.53	-	-	5.42	7.72	5.71	7.25	6.16	7.13
рН	6.61	6.37	6.65	6.22	7	6.58	6.96	6.94	7.22	7.09	6.96	7.12

Table 9. Major Hill Water Quality Data – Major Hill Restoration Site

Appendix D. Hydrology Data

Table 10A. UT1 Upstream Channel Evidence Table 10B. UT1 Downstream Channel Evidence Stream Gauge Graphs Table 11. Verification of Bankfull Events Table 12. Groundwater Hydrology Data Soil Temperature Graph Figure D1. 30-70 Percentile Graph for Rainfall Groundwater Gauge Graphs

UT1 Upstream Channel Evidence	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)
Max consecutive days channel flow	99	158	136	149
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport	Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	Yes	Yes	Yes
Other:				

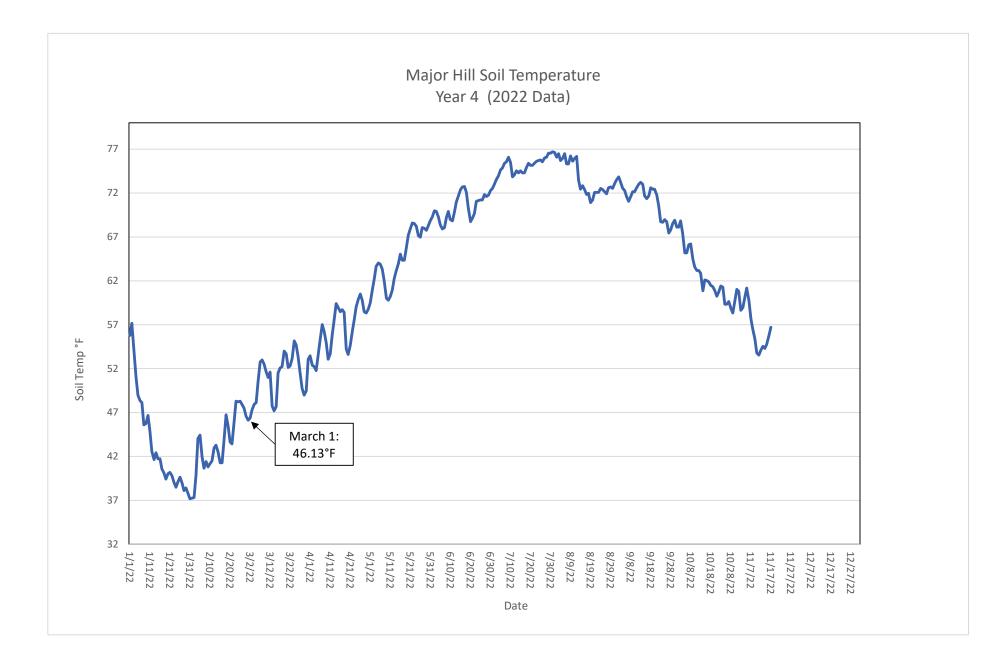

Table 10A. UT1 Upstream Channel Evidence – Major Hill Restoration Site

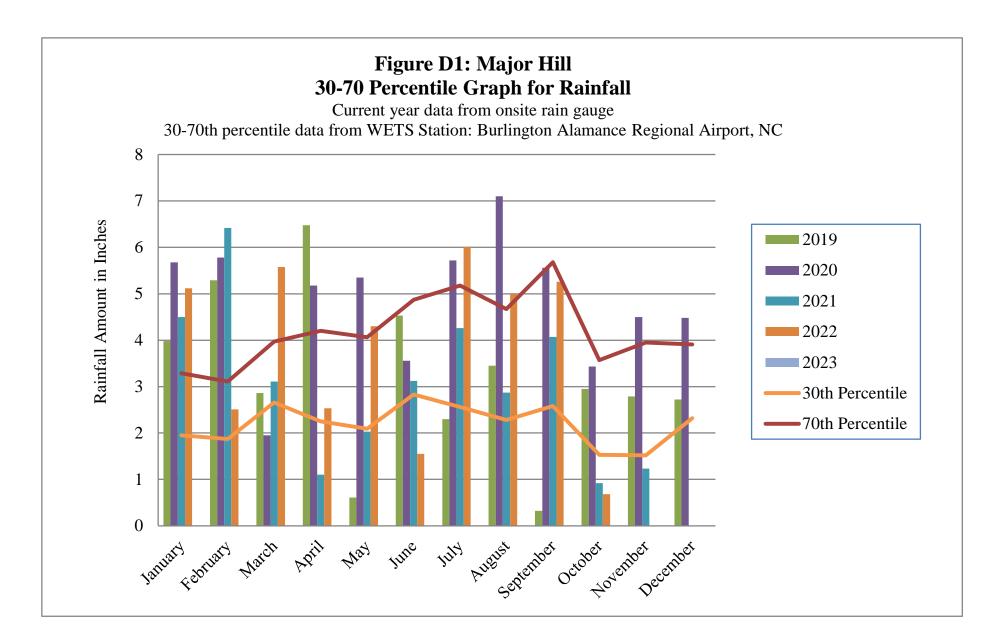
UT1 Downstream Channel Evidence	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)
Max consecutive days channel flow	52	236	285	216
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport	Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	Yes	Yes	Yes
Other:		Bankfull event documented.		

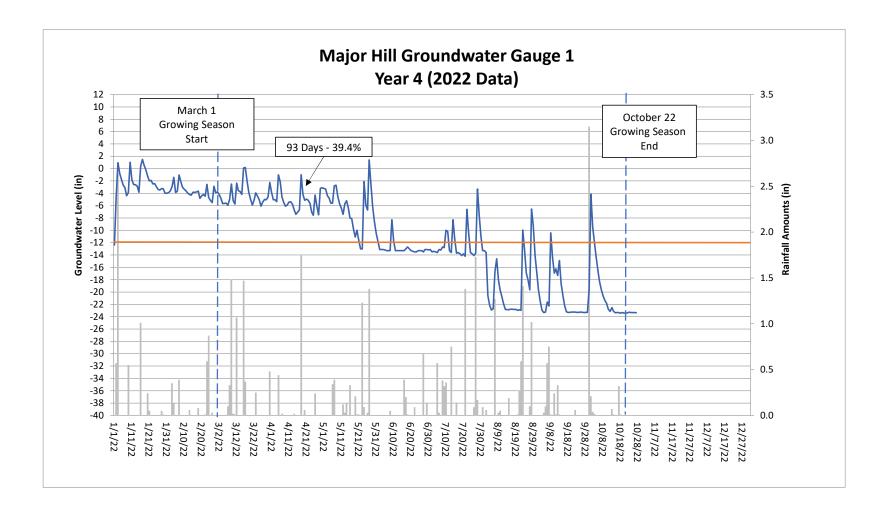
Table 10B. UT1 Downstream Channel Evidence – Major Hill Restoration Site

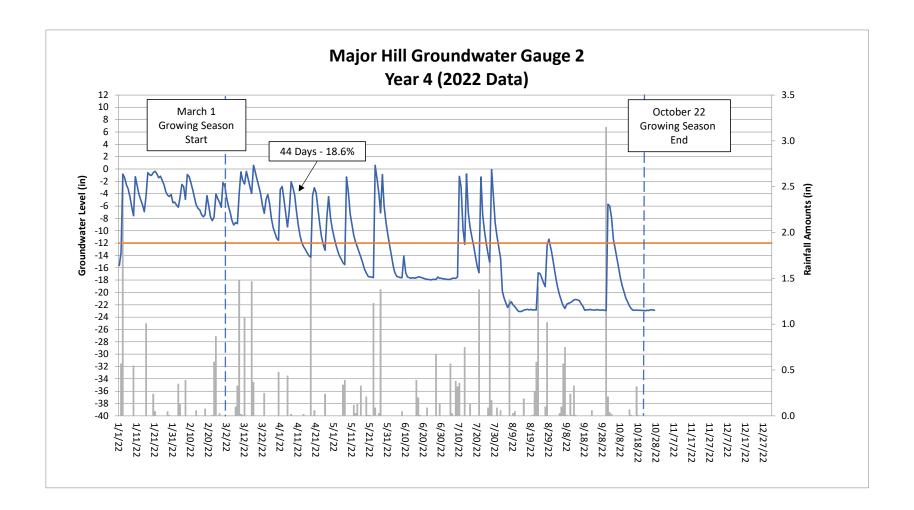
	On of Bankfull Ever		Dhata
Date of Data Collection	Date of Occurrence	Method	Photo (if available)
March 19, 2019	January 13, 2019	A trail camera captured the stream at bankfull after 1.10 inches of rain was documented on January 13, 2019 at an on-site rain gauge.	1
March 19, 2019	February 23, 2019	A trail camera captured the stream at bankfull after 2.74 inches of rain was documented between February 22-23, 2019 at an on-site rain gauge.	2
June 27, 2019	April 13, 2019	Stream gauge data indicates a bankfull event occurred after 4.11 inches of rain was documented between April 12-13, 2019 at an on-site rain gauge.	
September 9, 2019	July 24, 2019	A bankfull event likely occurred after 3.02 inches of rain was documented between July 23-24, 2019 at an on-site rain gauge.	
September 9, 2019	August 1, 2019	A bankfull event likely occurred after 1.96 inches of rain was documented on August 1, 2019 at an on-site rain gauge.	
April 13, 2020	April 13, 2020	A bankfull event was documented via trail camera after approximately 2.31 inches of rain was recorded at an on- site rain gauge	3
January 31, 2021	January 31, 2021	A bankfull event was documented via trail camera after approximately 1.19 inches of rain was recorded at an on- site rain gauge	4
March 11, 2021	February 15, 2021	Wrack and laid-back vegetation were observed along the top of bank and floodplain of UT-1 indicating a bankfull event occurred after 2.93 inches of rain was documented between February 11 and 15, 2021.	5
March 16, 2022	March 16, 2022	A trail camera captured the stream at bankfull after 1.47 inches of rain was documented on March 16, 2022 at an on-site rain gauge.	6
August 2, 2022	July 27, 2022	Wrack piles were observed along the top of bank and floodplain of UT-1 indicating a bankfull event occurred after 1.73 inches of rain was documented on July 27, 2022.	7

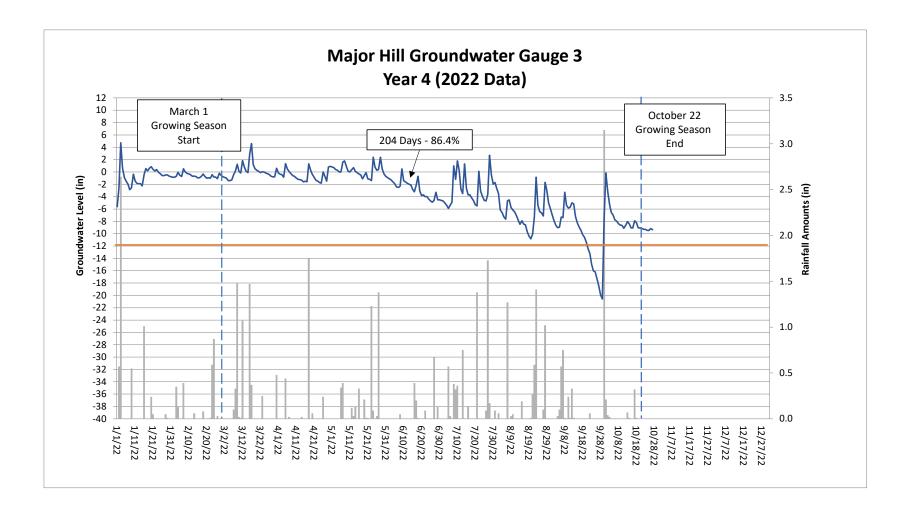
Table 11. Verification of Bankfull Events

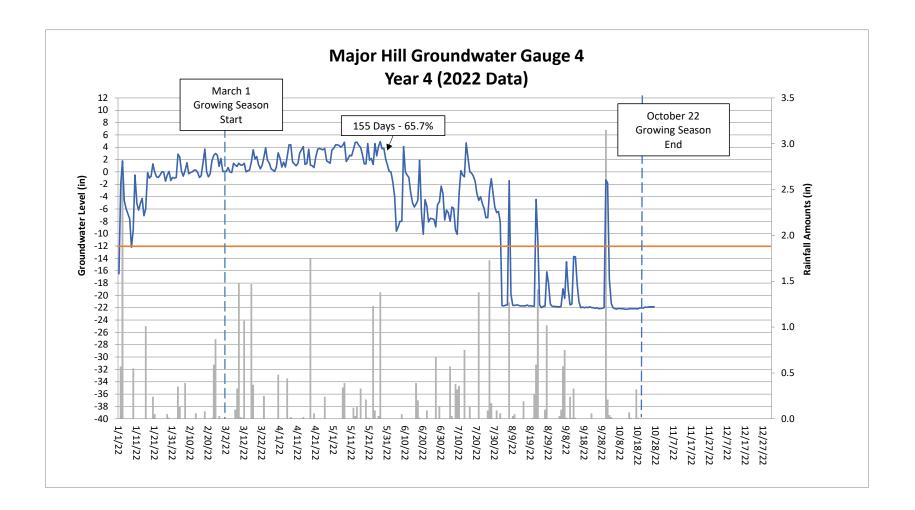


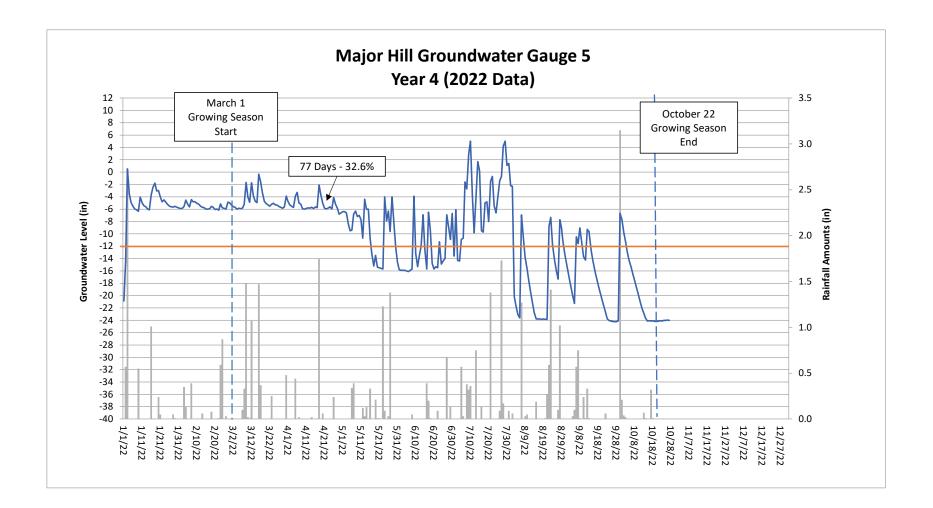


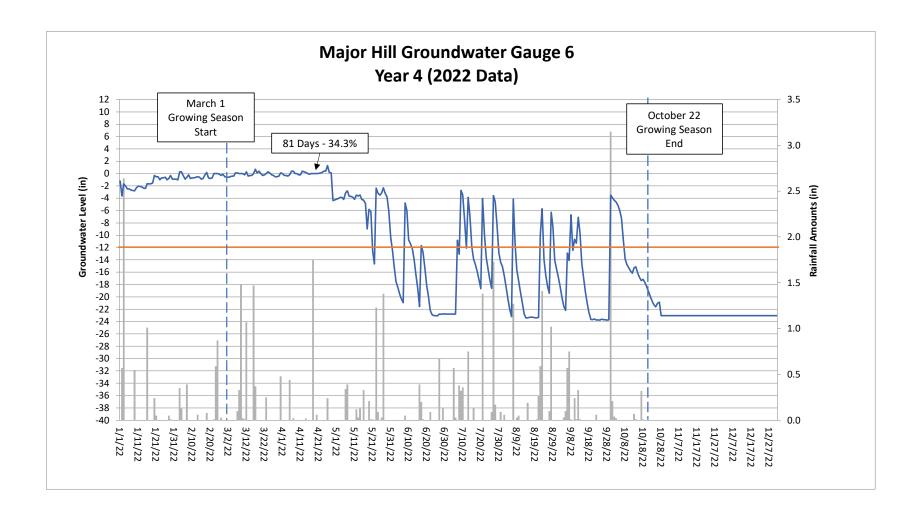

	Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)									
Gauge	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)	Year 6 (2024)	Year 7 (2025)			
1	No/14 days* 6.0 percent	Yes/136 days 57.9 percent	Yes/74 days 31.4 percent	Yes/93 days 39.4 percent						
2	No/19 days* 8.1 percent	No/19 days 8.0 percent	No/21 days 8.9 percent	Yes/44 days 18.6 percent						
3	Yes/25 days 10.6 percent	Yes/235 days 100 percent	Yes/226 days 95.8 percent	Yes/204 days 86.4 percent						
4	Yes/34 days 14.5 percent	Yes/72 days 30.5 percent	Yes/60 days 25.4 percent	Yes/155 days 65.7 percent						
5	Yes/119 days 50.6 percent	Yes/135 days 57.4 percent	Yes/53 days 22.5 percent	Yes/77 days 32.6 percent						
6	Yes/77 days 32.8 percent	Yes/44 days 18.7 percent	Yes/80 days 33.9 percent	Yes/81 days 34.3 percent						

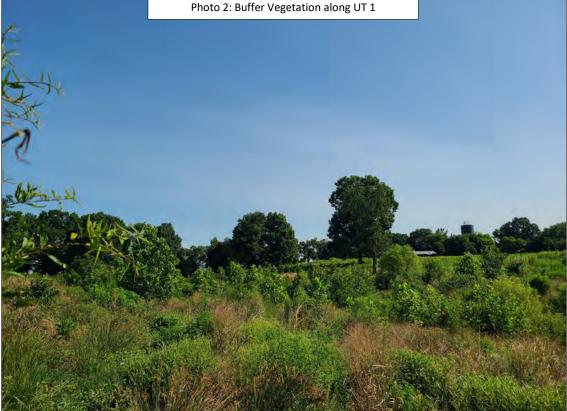

Table 12. Groundwater Hydrology Data – Major Hill Restoration Site


* These gauges did not meet success criteria due to a data shuttle failure that resulted in the loss of data. Based on rainfall and hydrology data that was not lost, all gauges would have likely met success criteria had the loss of data not occurred.

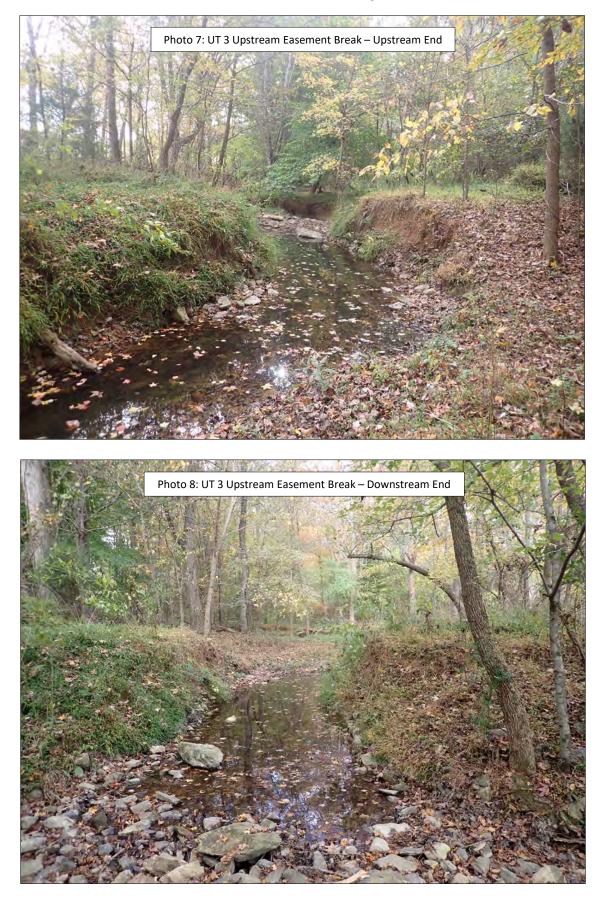








Appendix E. Site Photo Log



Appendix F. Riparian Buffer Year 4 (2022) Monitoring Report

FINAL RIPARIAN BUFFER MY4 (2022) MONITORING REPORT

MAJOR HILL MITIGATION SITE

Alamance County, North Carolina

DMS Project ID No. 100015 Full Delivery Contract No. 7193 USACE Action ID No. SAW-2017-01472 DWR No. 17-0921 RFP No. 16-006990

Cape Fear River Basin – Haw River Arm Cataloging Unit 03030002

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF MITIGATION SERVICES 1652 MAIL SERVICE CENTER RALEIGH, NORTH CAROLINA 27699-1652

February 2023

This project with conforms with the North Carolina consolidated buffer mitigation rule 15A NCAC 02B .0295, effective November 1, 2015 and the Jordan Lake Buffer Protection Rule (15A NCAC 02B .0267 & 15A NCAC 02B .0268)

Table of Contents

1.0	ΜΙΤΙΟ	GATION PROJECT SUMMARY	. 1
2.0	REGU	ILATORY CONSIDERATIONS	. 2
3.0	RIPA	RIAN RESTORATION, ENHANCEMENT, & PRESERVATION PLAN	. 2
	3.1	Riparian Area Restoration Activities	
		3.1.1 Site Preparation	. 2
		3.1.2 Planting	.4
	3.2	Riparian Buffer Enhancement via Cattle Exclusion Activities	
	3.3	Riparian Buffer Preservation Activities	. 5
	3.4	Marsh Treatment Area	. 5
4.0	ANN	JAL MONITORING	. 5
	4.1	Monitoring	
	4.2	Performance Standards	. 6
	4.3	Results and Discussion	. 6
	4.4	Maintenance and Management	. 7
5.0	REFE	RENCES	10

Tables

Table 1. Buffer Project Attributes	1
Table 2. Buffer Project Areas and Assets	3
Table 3. Planted Bare Root Woody Vegetation	4
Table 4. Riparian Buffer Monitoring	6
Table 5. Riparian Buffer Vegetation Totals	7
Table 6. Total Stems by Plot and Species	8
Table 7. Temporary Vegetation Plot Data	10

Attachments

Attachment 1

Figure A. Riparian Buffer Asset Map Figure B. Riparian Buffer Planting Map Year 4 (2022) Vegetation Plot Photos Year 4 (2022) Planted Stem Height Data

1.0 MITIGATION PROJECT SUMMARY

The Major Hill Stream and Wetland Mitigation Site (hereafter referred to as the "Site") encompasses 16.7 acres along warm water, unnamed tributaries to Pine Hill Branch. The Site is located approximately 3.5 miles southeast of Snow Camp and 6 miles north of Silk Hope in southern Alamance County near the Chatham County line. Project attributes are included in the following table.

Project Name	Major Hill
Hydrologic Unit Code	3030002050050
River Basin	Cape Fear
Geographic Location (Lat, Long)	35.873206, -79.360906
Site Protection Instrument (DB, PG)	(2789, 896), (2514, 756), (3143, 270), (3150, 920)
Total Credits (BMU)	402,837
Types of Credits	Riparian Buffer Restoration, Enhancement, & Preservation
Mitigation Plan Date	Apr-18
Initial Planting Date	Dec 2018-Jan 2019
Baseline Report Date	Mar-19
MY1 Report Date	Nov-19
MY2 Report Date	Jan-21
MY3 Report Date	Jan-22
MY4 Report Date	Nov-22
MY5 Report Date	

Table 1. Buffer Project Attributes

The Site drainage area is primarily composed of pasture, forest, agricultural land, and sparse residential property. Impervious surfaces account for less than five percent of the upstream land surface.

Before construction, Site land use consisted of pasture, hayfields, disturbed forest, and agricultural land used for livestock grazing and hay production. Livestock had unrestricted access to Site streams, and stream banks were eroded vertically and laterally and received extensive sediment and nutrient inputs. Riparian zones in the upper reaches of UT 1 were primarily composed of herbaceous vegetation that was sparse and disturbed due to livestock grazing, bush hogging, and regular land-management activities. The downstream reaches of UT 1 and all of UT 3 were primarily wooded with livestock disturbance to stream channels. UT 2 was the lone tributary not subject to continuous, unrestricted livestock access. Riparian areas immediately adjacent to UT 2 were forested with a fence to protect this area from livestock access.

The riparian areas were restored in concurrence with the Major Hill Stream and Wetland Mitigation Site (NC DMS Project ID 10015, SAW-2017-01472) and involved restoring riparian buffers adjacent to restored streams to help reduce non-point source contaminant discharges to downstream waters in the Haw River sub-watershed of Jordan Lake. All riparian areas were assessed by DWR (Katie Merritt and Sue Homewood) during a site visit on February 20, 2018, to determine the Site's viability for buffer mitigation.

The Site is protected with a permanent conservation easement. Riparian restoration, enhancement, and preservation area widths adjacent to restored streams extend out to a maximum of 200 feet from the top of stream banks with a minimum width of 50 from the top of banks. Riparian buffer enhancement and preservation credits generated on this Site are allowed pursuant to 15A NCAC 02B .0295 (o). No riparian restoration areas less than 20 feet wide, measured perpendicularly from the top of banks, are used to generate riparian buffer credit.

Riparian Buffer Mitigation Credit was not generated in areas generating wetland mitigation credit.

2.0 REGULATORY CONSIDERATIONS

Credit determination for this Site follows the North Carolina consolidated buffer mitigation rule 15A NCAC 02B .0295, effective November 1, 2015 (see Table 2 on the following page and Figure A, Attachment 1).

3.0 RIPARIAN RESTORATION, ENHANCEMENT, & PRESERVATION PLAN

This Site was also proposed as a stream and wetland mitigation project; therefore, the restoration of riparian areas was accomplished through the goals and methods outlined by the *Major Hill Stream and Wetland Mitigation Plan*. All applicable federal, state and local permits or authorizations were acquired to implement the mitigation plan.

Primary goals focused on 1) improving water quality, 2) enhancing flood attenuation and hydrology, 3) improving aquatic resources, and 4) restoring riparian habitat. Completed mitigation provides floodplain connectivity, floodplain resistance, stream stability, sediment transport, surface and subsurface storage/retention, in-stream habitat, riparian habitat and structure, thermal regulation, floodplain biogeochemical processing, and pollutant filtration/removal of pollutant sources. The riparian area will be restored through the revegetation of native plant communities.

3.1 Riparian Area Restoration Activities

3.1.1 Site Preparation

Soil grading occurred during stream restoration activities. Topsoils were stockpiled during construction activities and spread on the soil surface once critical subgrade was established. The replaced topsoil will serve as a viable growing medium for community restoration to provide nutrients and aid in the survival of planted species.

Farm Pond Removal

To complete the stream and wetland restoration activities and subsequent riparian buffer restoration, the removal of a small farm pond, ~0.58 acres, occurred. Stream, wetland, and riparian area restoration within the abandoned pond included 1) notching the dam to dewater; 2) removal of the dam to the elevation of the adjacent floodplain; 3) excavating sediment that is unsuitable for channel bank construction; 4) backfilling areas of sediment removed with soil suitable for channel construction (as necessary); 5) excavation of the design channel, 6) stabilization of the channel with coir matting, seed, and mulch; and 7) installation of structures.

Table 2. Buffer Project Areas and Assets

RIPARIAN BUFFER (15A NCAC 02B.0295)									If Converted to Nutrient Offset			
Location	Jurisdictional Streams	Restoration Type	Reach ID/ Component	Buffer Width (ft)	Creditable Area (sf)*	Initial Credit Ratio (x:1)	% Full Credit	Final Credit Ratio (x:1)	Riparian Buffer Credits (BMU)	Convertible to Nutrient Offset (Yes or No)	Nutrient Offset: N (lbs)	Nutrient Offset: P (lbs)
Rural	Subject & Nonsubject	Restoration	1	0-100	213,290	1	100%	1.00000	213,290.000	Yes	11129.775	716.842
Rural	Subject & Nonsubject	Restoration	2	101-200	40,976	1	33%	3.03030	13,522.094	Yes	2138.186	137.715
Rural	Subject	Enhancement	3	0-100	341,433	2	100%	2.00000	170,716.500	No	0.000	0.000
	•			SUBTOTALS	595,699				397,528.594		13,267.960	854.558
			[

			ELIGIBLE PRESERVATION AREA		198,566				
Location	Jurisdictional Streams	Restoration Type	Reach ID/ Component	Buffer Width (ft)	Creditable Area (sf)*	Initial Credit Ratio (x:1)	% Full Credit	Final Credit Ratio (x:1)	Riparian Buffer Credits (BMU)
Rural	Nonsubject	Preservation	4	0-100	25,614	5	100%	5.00000	5,122.800
Rural	Nonsubject	Preservation	5	101-200	2,814	5	33%	15.15152	185.724
			SUBTOTALS		28,428				5,308.524
				TOTALS	624,127				402,837.117

*Area eligible for preservation may be no more than 25% of total area, where total area is back-calculated with the equation R+E/0.75.

*Buffers must be at minimum 20' wide for riparian buffer credit, buffers must be 50' wide for nutrient offset credit

*When preservation areas exceed the total eligible preservation area, select the areas with the best credit ratios as the creditable areas.

3.1.2 Planting

Bare-root seedlings within the Piedmont Alluvial and Dry-Mesic Oak-Hickory Forests were planted at a density of approximately 680 stems per acre on 8-foot centers. Species in the streamside assemblage and Marsh Wetland Treatment Areas were planted at a density of approximately 2720 stems per acre on 4-foot centers. The following table summarizes planted bare-root stems within the Site.

Species	Piedmont/Low Mountain Alluvial Forest	Dry-Mesic Oak/Hickory Forest	Marsh Treatment Wetland	Streamside Assemblage	Total
Acres	1.1	5.5	0.01	1.5	8.11
Alnus serrulata			5	20	25
Asimina triloba				200	200
Betula nigra	100			200	300
Carpinus caroliniana		600			600
Cephalanthus occidentalis			5	20	25
Cercis canadensis		500			500
Cornus amomum	95		5	800	900
Diospyros virginiana		450			450
Fraxinus americana		100			100
Fraxinus pennsylvanica	150			750	900
Liriodendron tulipifera	75				75
Nyssa sylvatia		600			600
Platanus occidentalis	120			780	900
Quercus nigra	110	790		500	1,400
Quercus phellos	100	700		400	1,200
Salix nigra*				400*	400
Sambucus canadensis			11	14	25
TOTALS	750	3,740	26	4,084	8,600
Stems/Acre	682	680	2600	2722	1060

Table 3. Planted Bare Root Woody Vegetation

*Live stakes of *Salix nigra* were planted; all other planted species were planted as bare root plants.

3.2 Riparian Buffer Enhancement via Cattle Exclusion Activities

Riparian buffer enhancement included permanently protecting the existing riparian buffer from livestock via exclusionary fencing, cutting, clearing, filling, grading, and any similar activities that would affect the functionality of the riparian buffer. These areas are defined primarily as disturbed mixed hardwoods. Buffer credits sought in the enhancement area are allowed under 15A NCAC 02B .0295 (o)(6). The

enhancement area extends a maximum of 200 feet from the top of the bank with a minimum width of 20 from the top of stream banks.

A small portion of UT-3 generates riparian buffer enhancement credit from only one side of the stream. Before construction, cattle had access to the entire area; however, the only access point was from the pasture on the northern side of the stream, the parcel owned by Mr. Lamm. Once fencing was installed to prevent cattle access from Mr. Lamm's parcel to the stream, cattle were no longer able to access the south side of the stream. This action will result in compliance with 15A NCAC 02B .0295 (o)(6), which states that the permanent exclusion of grazing livestock must be done such that the livestock are fenced out of the stream and its adjacent buffer. The southern parcel, which is not a part of the conservation easement, is owned by the Caviness family and is a single-family home.

3.3 Riparian Buffer Preservation Activities

Riparian buffer preservation includes permanently protecting existing riparian buffers from cutting, clearing, filling, grading, and any similar activities that would affect the functionality of the riparian buffer. Areas specified for Preservation at the Site, in accordance with 15A NCAC 02B .0295, are defined primarily as mixed hardwoods, with a number of high-value species and over 200 species total per acre. They are areas where livestock was fenced out before construction – these areas had little or no historical livestock access.

3.4 Marsh Treatment Area

A marsh treatment area was constructed to intercept surface waters draining through agricultural areas before discharging into UT1. The marsh treatment area is excluded from credit calculations.

4.0 ANNUAL MONITORING

4.1 Monitoring

Eight vegetation monitoring plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008); this covers 3.4% of the area generating riparian buffer restoration credit. Vegetation monitoring will occur annually in the fall (between September and November), prior to the loss of leaves for a period of five monitoring years following planting. Parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph. In addition, inspections for beaver and other potential nuisance species will occur throughout the monitoring period.

The following table outlines riparian buffer monitoring for this project; monitoring parameter descriptions follow.

Required	Parameter	Quantity	Frequency	Notes
Yes	Vegetation	Eight (8) plots located across all restored buffer zones.	Annual	Vegetation will be monitored for five years or until performance standards are met. Visual monitoring of the site will be done all five years. Analysis of vegetation will be recorded using level 2 CVS Monitoring protocol.
Yes	Project Boundary	NA	Annual	Locations of fence damage, vegetation damage, boundary encroachments, etc. will be mapped.

Table 4. Riparian Buffer Monitoring

4.2 Performance Standards

Performance standards were established to verify that the vegetation component supports community elements necessary for forest development and the maintenance of diffuse flow through the riparian buffer in accordance with North Carolina Division of Water Resources Administrative Code 15A NCAC 02B.0295 (Mitigation Program Requirements for Protection and Maintenance of Riparian Buffers). Performance standards are dependent upon the density and growth of at least four native hardwood tree species where no one species is greater than 50% of the stems. After five years of monitoring, an average density of 260 woody stems per acre, including planted shrubs (silky dogwood and blueberry), must be surviving, and diffuse flow maintained. 15A NCAC 02b .0295 (2)(E) dictates that monitoring for planted stems would also include the health of planted stems. Level 2 CVS monitoring protocol requires the vigor, a determinant of health, of a monitored stem be recorded. If requested, RS will make available during the monitoring years, planted stem health, e.g. vigor.

4.3 Results and Discussion

In early January 2020, a winter-time visual assessment of the Site was performed, and it was determined that although Year 1 (2019) vegetation data, including random transects, showed a high density of trees, a light supplemental planting would help ensure the long-term success in several areas. On January 31, 2020, three areas that visually exhibited low stem density and/or poor vigor were supplementally planted. During the supplemental planting effort, approximately 370 stems were planted across 1.20 acres (approximately 300 stems per acre). As the planting was designated for visual purposes and was not an effort to increase stem density data, no stems were planted within permanent vegetation plots. The following table lists species included in the supplemental planting list. Preparation included the application of 100 lbs of lime, 50 lbs of fertilizer, and 3 lbs of seed to stabilize bare areas (see Figure A for planting areas).

Species	Number of Stems
Tag Alder (Alnus serrulata)	20
Chinkapin (Castanea pumila)	20
Hackberry (Celtis occidentalis)	50
Hawthorn (Crataegus marshallii)	20
Crab Apple (Malus angustifolia)	50
Red Mulberry (Morus rubra)	100
Sycamore (Platanus occidentalis)	50
Shumard Oak (Quercus shumardii)	50
Total	370

Supplemental Planting Species List

Based on the number of stems counted, average densities were measured at 405 hardwood tree stems per acre (excluding livestakes, shrubs, pines, and vines) in year 4 (2022). In addition, all but three permanent plots met success criteria based on planted stems alone. Plots 1 and 5 meet success criteria when including naturally recruited stems of green ash (*Fraxinus pennsylvanica*) and red maple (*Acer rubrum*). Additionally, three temporary vegetation transects also met success criteria. The following Table 5 summarizes riparian buffer success criteria, Table 6 summarizes all permanent vegetation plot data by species, plot, and year, and Table 7 summarizes temporary vegetation plot data. Vegetation plot photographs are included in Attachment 1.

Plot #	Success Criteria Met?	MY 4 (2022) Planted Stems/Ac	MY 4 (2022) All Stems/Ac					
1	Yes	202	445					
2	Yes	283	283					
3	Yes	405	405					
4	No	202	202					
5	Yes	243	324					
6	Yes	486	526					
7	Yes	445	445					
8	Yes	647	688					
T-1	Yes		405					
T-2	Yes		364					
T-3	Yes		364					
Average Planted Stems/Acre	Yes	364	405					

4.4 2023 Maintenance and Management

Restoration Systems continues to monitor fescue throughout the Site. Based on permanent and random vegetation monitoring plots and visual observations, planted stems are establishing within areas where fescue was a concern. Currently, no additional planting or fescue specific herbicide treatments are proposed.

Table 6. Total Stems by Plot and Species Project Code 17.009. Project Name: Major Hill

											Curren	t Plot D	ata (MY4 20	22)														Annual I	Means					
			17.009-01	-0001	17.	009-01-0	0002	17.0	09-01-00	03	17.009-01-	0004	17.009-0	1-0005	17.	.009-01-	0006	17.0	009-01-000	7 1	.009-01-0008	1	VIY4 (2	022)	MY3 (2	2021)		MY2 (2	2020)	1	MY1 (2	2019)	4	MYO (2019)
Scientific Name	Common Name	Species Type	PnoLS P-all	Т	PnoLS	6 P-all	Т	PnoLS	P-all T	P	noLS P-all	Т	PnoLS P-all	Т	PnoL	S P-all	Т	PnoLS	P-all T	Pno	S P-all T	PnoL	S P-all	Т	PnoLS P-all	Г	Pn	oLS P-al	ГТ	PnoLS	S P-a	Л Т	PnoLS	S P-all T
Acer rubrum	red maple	Tree		2	2																				2								3	
Asimina triloba	pawpaw	Tree									1 1	1 1						1	1	1			2	2	2 2	2	2	2	2	2	3	3	3 7	7 7
Betula nigra	river birch	Tree									1 1	1 1						1	1	1	1 1	1	3	3 3	3 3	3	3	4	4	4 /	6	6	6 5	э 9
Carpinus caroliniana	American hornbeam	Tree	1	1 1	1 3	3 3	3	4	4	4						2 2	2 2				1 1	1 1	1 1	1 1	1 11 1	11	11	10	10 1	0 1	4	14 1	4 5	5 5
Cercis canadensis	eastern redbud	Tree						1	1	1											2 2	2	3	3 3	3 4	4	4	5	5	5	8	8	8 14	4 14
Cornus amomum	silky dogwood	Shrub																													2	2	2 1	1 1
Diospyros virginiana	common persimmon	Tree			1	l 1	1	1	1	1	1 1	1 1				1 1	. 1				4 4	4	8	8 8	8 8	8	10	9	9 1	0 '	9	9	9 5	5 5
Fraxinus	ash	Tree																			1 1	1	1	1 :	1 1	1	1	1	1	1	1	1	1 1	1 1
Fraxinus americana	white ash	Tree														3 3	3				2 2	2	5	5 5	5 5	5	5	5	5	5	5	5	5 5	5 5
- raxinus pennsylvanica	green ash	Tree	2	2 6	6						1 1	1 1	. 1	1	3			1	1	1		1	5	5 12	2 5	5	8	5	5	8	4	4	4 3	3 3
Liquidambar styraciflua	sweetgum	Tree																															2	
Liriodendron tulipifera	tuliptree	Tree	1 :	1 1	1																		1	1 :	1 1	1	1	1	1	1	1	1	1 5	5 5
Nyssa sylvatica	blackgum	Tree						1	1	1													1	1 :	1 2	2	2	2	2	2	4	4	4 10	0 10 1
Platanus occidentalis	American sycamore	Tree			1	1 1	1						1	1	1	2 2	3						4	4 5	5 4	4	5	5	5	5	7	7	8	7 7
Quercus	oak	Tree	1 :	1 1	1																		1	1 :	1 1	1	1	2	2	2	3	3	3 23	3 23
Quercus nigra	water oak	Tree									1 1	. 1	. 4	4	4	3 3	3	3	3	3	1 1	1 1	2 1	.2 12	2 12 1	12	12	12	12 1	2 2	20	20 2	0 10	0 10
Quercus phellos	willow oak	Tree			2	2 2	2	3	3	3						1 1	. 1	. 5	5	5	4 4	4 1	5 1	.5 15	5 13 1	13	14	12	12 1	2 1	16	16 1	.6 18	8 18 :
Quercus rubra	northern red oak	Tree																									1						T	
Unknown		Shrub or Tree																															f	6 6
		Stem count	5 !	5 11	1 7	7 7	7	10	10	10	5 5	5 5	6	6	8 1	2 12	13	11	11	11	L6 16	17 7	2 7	2 82	2 72 7	72	80	75	75 7	9 103)3 1	LO3 10	9 129	9 129 12
		size (ares)	1			1			1		1		1			1			1		1		8		8			8			8	\$		8
		size (ACRES)	0.02			0.02			0.02		0.02		0.02	2	1	0.02			0.02		0.02		0.20	C	0.2	0		0.2	.0		0.2	20		0.20
		Species count	4 4	4 5	5 4	1 4	4	5	5	5	5 5	5 5	5 3	3	3	6 6	6	5 5	5	5	8 8	9 1	4 1	.4 15	5 14 1	14	15	14	14 1	4 1	15	15 1	7 16	6 16 1
	:	Stems per ACRE	202.3 202.3	3 445.2	2 283.3	3 283.3	283.3	404.7	404.7 4	04.7	202.3 202.3	3 202.3	242.8 242	.8 323.	7 485.	6 485.6	526.1	445.2	445.2 44	5.2 647	.5 647.5 6	38 <mark>364</mark> .	<mark>2</mark> 364.	.2 414.8	3 64.2 364	.2 40	4.7 37	<mark>'9.4</mark> 37!	1.4 399	.6 52:	1 5	21 551.	4 652.6	6 652.6 652
Color for Density		PnoLS = Plante							·			•			-	-	-	-						•						_				

Color for Density Exceeds requirements by 10%

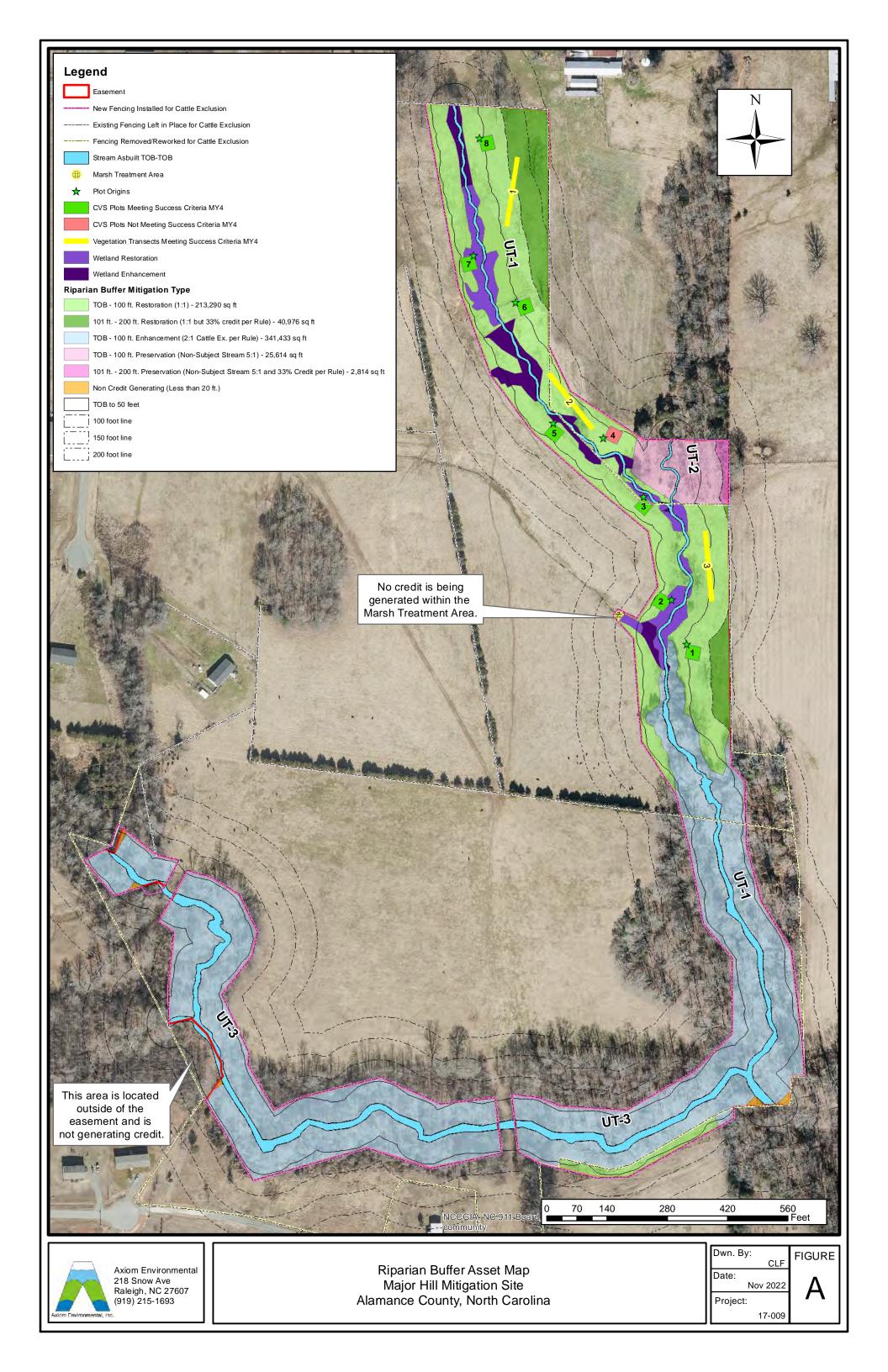
PnoLS = Planted excluding livestakes P-all = Planting including livestakes

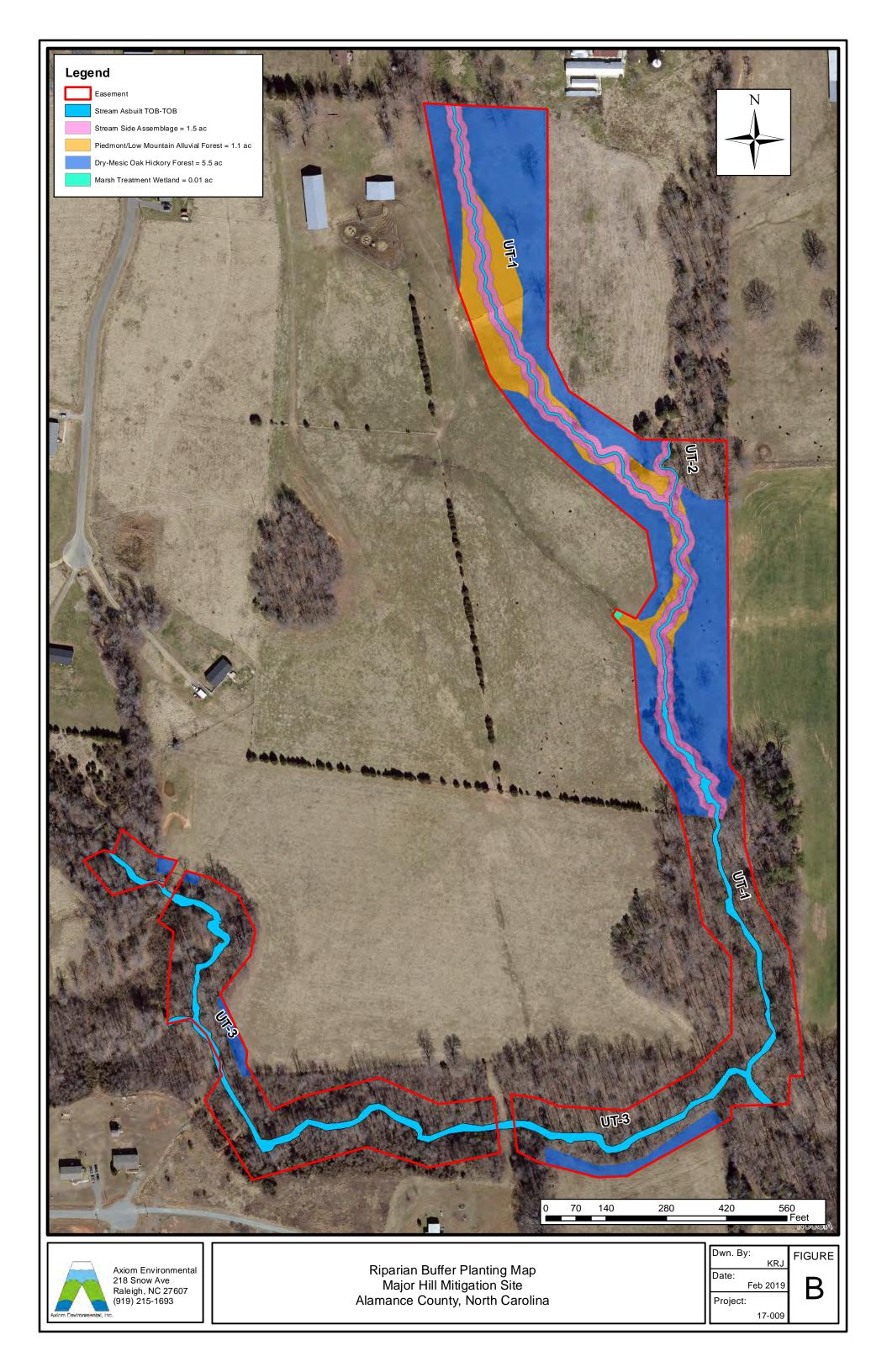
 Exceeds requirements, but by less than 10%
 T = All planted and natural recruits including livestakes

 Fails to meet requirements, by less than 10%
 T includes natural recruits

 Fails to meet requirements by more than 10%
 T includes natural recruits

Table 7. Temporary Vegetation Plot Data


Creation	50m x 2m Temporary Plot										
Species	T-1	T-2	T-3								
Carpinus caroliniana	1										
Cercis canadensis	1										
Diospyros virginiana	2	3	3								
Fraxinus pennsylvanica	1	5									
Morus rubra			2								
Quercus nigra	5										
Quercus phellos		1	3								
Quercus rubra			1								
Total Stems	10	9	9								
Total Stems/Acre	405	364	364								


5.0 REFERENCES

- Jordan Lake Water Supply Watershed Buffer Rules 15A NCAC 02B .0267, 15A NCAC 02B .0268, and 15A NCAC 02B .0295
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Level 1-2 Plot Version 4.2. Ecosystem Enhancement Program, North Carolina Department of Environment and Natural Resources.
- Schafale, M.P. and A.S. Weakley. 1990. *Classification of the Natural Communities of North Carolina: Third Approximation*. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.

ATTACHMENT 1

Figure A. Riparian Buffer Asset Map Figure B. Riparian Buffer Planting Map Year 4 (2022) Vegetation Plot Photos Year 4 (2022) Planted Stem Height Data



Major Hill MY-04 (2022) Vegetation Monitoring Photographs Taken September 2022

MY4 (2022) Riparian Buffer Monitoring Report (Project No. 100015) Major Hill Stream and Wetland Restoration Site

Attachment 1 Restoration Systems, LLC

Major Hill MY-04 (2022) Vegetation Monitoring Photographs Taken September 2022

Plot	Scientific Name	X	Y	Height (cm)	DBH (cm)	Vigor
1	Liriodendron tulipifera	7.3	1.3	243	2.1	4
1	Carpinus caroliniana	9.2	4.1	250	1.1	4
1	Quercus	6.6	4.7	140	0.2	4
1	Fraxinus pennsylvanica	1.6	3.8	111		3
1	Fraxinus pennsylvanica	6.7	9.7	115		3
2	Quercus phellos	2.9	0.5	375	4.2	4
2	Carpinus caroliniana	4.8	3.4	135		4
2	Carpinus caroliniana	7.1	6.5	75		3
2	Platanus occidentalis	10.0	7.1	210	1.8	4
2	Nyssa sylvatica	4.5	8.0			Missing
2	Quercus phellos	1.6	5.9	247	2.3	4
2	Diospyros virginiana	7.8	2.6	155	0.3	4
2	Carpinus caroliniana	7.5	4.6	135		4
3	Carpinus caroliniana	2.4	1.4	315	2.4	4
3	Quercus phellos	5.3	1.4	205	1.9	4
3	Carpinus caroliniana	8.1	1.3	84		3
3	Carpinus caroliniana	6.8	2.7	115		3
3	Quercus phellos	10.0	3.0	98		4
3	Carpinus caroliniana	6.3	5.3	40		3
3	Cercis canadensis	4.2	10.0			Missing
3	Cercis canadensis	1.3	10.0	51		4
3	Diospyros virginiana	1.3	8.1	237	1.4	4
3	Nyssa sylvatica	1.7	5.3	175	0.3	4
3	Quercus phellos	3.8	7.9	155	0.2	4
4	Fraxinus pennsylvanica	7.6	0.9	75		3
4	Betula nigra	7.6	3.3	54		3
4	Asimina triloba	8.3	8.2	30		1
4	Quercus nigra	6.2	8.0	63		3
4	Diospyros virginiana	2.4	7.2	112		3
5	Quercus nigra	0.3	1.0	215	1.7	4
5	Platanus occidentalis	2.8	0.1	400	4.4	4
5	Fraxinus pennsylvanica	2.1	3.7	235	1.8	4
5	Diospyros virginiana	5.1	4.3			Missing
5	Quercus nigra	5.5	1.2	110		4
5	Quercus nigra	7.5	8.0	70		4
5	Quercus nigra	0.2	6.5	225	1.1	4
5	Betula nigra	2.5	7.2			Missing
6	Quercus nigra	2.2	0.3	139	0.8	4
6	Carpinus caroliniana	3.0	2.7	90		4
6	Diospyros virginiana	0.9	3.4	180	0.8	4
6	Quercus phellos	6.5	0.8	160	0.6	4
6	Carpinus caroliniana	8.4	2.4	180	0.8	4
6	Quercus nigra	9.8	3.9	175	1.4	4
6	Platanus occidentalis	7.6	4.8	315	2.4	4
6	Fraxinus americana	9.0	7.0	265	1.4	4
6	Fraxinus americana	6.8	7.2	215	1.4	4
6	Fraxinus americana	4.6	8.0	260	1.8	4
6	Quercus nigra	0.5	8.1	218	0.8	4
6	Platanus occidentalis	2.2	6.7	280	2.4	4

Plot	Scientific Name	X	Y	Height (cm)	DBH (cm)	Vigor
7	Platanus occidentalis	2.6	2.5			Missing
7	Quercus phellos	4.8	0.9	315	2.6	4
7	Quercus phellos	5.3	3.0	340	3.1	4
7	Betula nigra	5.7	4.9	252	1.4	4
7	Quercus nigra	7.6	3.5	145	0.3	4
7	Quercus phellos	8.8	1.2	261	1.4	4
7	Asimina triloba	8.5	6.1	335	5.4	4
7	Quercus phellos	6.3	7.1	355	4.4	4
7	Quercus nigra	8.8	8.5	374	5.1	4
7	Quercus nigra	1.2	6.9	205	1.8	4
7	Quercus phellos	1.7	5.1	235	2.1	4
7	Fraxinus pennsylvanica	3.6	8.2	355	4.8	4
8	Diospyros virginiana	4.3	1.5	153	0.3	4
8	Fraxinus	4.8	3.2	145	0.4	4
8	Diospyros virginiana	1.3	4.6	171	0.8	4
8	Cercis canadensis	7.3	0.4	45		3
8	Fraxinus americana	9.9	2.9	100		3
8	Betula nigra	7.3	2.8	92		4
8	Quercus nigra	5.1	5.0	140	0.3	4
8	Carpinus caroliniana	7.5	5.7	40		3
8	Cercis canadensis	9.8	6.0	45		3
8	Quercus phellos	7.4	6.2	240	1.3	4
8	Diospyros virginiana	7.2	7.6	215	1.1	4
8	Quercus phellos	8.4	8.7	170	0.3	4
8	Fraxinus americana	5.0	8.5	86		4
8	Diospyros virginiana	3.0	7.1	140	0.2	4
8	Quercus phellos	1.7	9.2	140	0.6	4
8	Quercus phellos	1.3	1.3	105		4